Network Intrusion Detection using Deep Learning A Feature Learning Approach /

This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kim, Kwangjo (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Aminanto, Muhamad Erza (http://id.loc.gov/vocabulary/relators/aut), Tanuwidjaja, Harry Chandra (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs on Cyber Security Systems and Networks,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04102nam a2200601 4500
001 978-981-13-1444-5
003 DE-He213
005 20190718021208.0
007 cr nn 008mamaa
008 180925s2018 si | s |||| 0|eng d
020 |a 9789811314445  |9 978-981-13-1444-5 
024 7 |a 10.1007/978-981-13-1444-5  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.A25 
072 7 |a UR  |2 bicssc 
072 7 |a COM053000  |2 bisacsh 
072 7 |a UR  |2 thema 
082 0 4 |a 005.8  |2 23 
100 1 |a Kim, Kwangjo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Network Intrusion Detection using Deep Learning  |h [electronic resource] :  |b A Feature Learning Approach /  |c by Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XVII, 79 p. 30 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs on Cyber Security Systems and Networks,  |x 2522-5561 
505 0 |a Chapter 1 Introduction -- Chapter 2 Intrusion Detection Systems -- Chapter 3 Classical Machine Learning and Its Applications to IDS -- Chapter 4 Deep Learning -- Chapter 5 Deep Learning-based IDSs -- Chapter 6 Deep Feature Learning -- Chapter 7 Summary and Further Challenges. 
520 |a This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book. Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity. 
650 0 |a Data protection. 
650 0 |a Artificial intelligence. 
650 0 |a Computer security. 
650 0 |a Wireless communication systems. 
650 0 |a Mobile communication systems. 
650 0 |a Big data. 
650 0 |a Data mining. 
650 1 4 |a Security.  |0 http://scigraph.springernature.com/things/product-market-codes/I28000 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Systems and Data Security.  |0 http://scigraph.springernature.com/things/product-market-codes/I28060 
650 2 4 |a Wireless and Mobile Communication.  |0 http://scigraph.springernature.com/things/product-market-codes/T24100 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
700 1 |a Aminanto, Muhamad Erza.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Tanuwidjaja, Harry Chandra.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811314438 
776 0 8 |i Printed edition:  |z 9789811314452 
830 0 |a SpringerBriefs on Cyber Security Systems and Networks,  |x 2522-5561 
856 4 0 |u https://doi.org/10.1007/978-981-13-1444-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)