Multi-Objective Optimization Evolutionary to Hybrid Framework /
This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving variou...
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
---|---|
Άλλοι συγγραφείς: | Mandal, Jyotsna K. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Mukhopadhyay, Somnath (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Dutta, Paramartha (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Singapore :
Springer Singapore : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Recent Advances in Computational Optimization Results of the Workshop on Computational Optimization WCO 2016 /
Έκδοση: (2018) -
Bio-Inspired Collaborative Intelligent Control and Optimization
ανά: Ding, Yongsheng, κ.ά.
Έκδοση: (2018) -
Memetic Computation The Mainspring of Knowledge Transfer in a Data-Driven Optimization Era /
ανά: Gupta, Abhishek, κ.ά.
Έκδοση: (2019) -
Nature-Inspired Algorithms and Applied Optimization
Έκδοση: (2018) -
Compact and Fast Machine Learning Accelerator for IoT Devices
ανά: Huang, Hantao, κ.ά.
Έκδοση: (2019)