Cognitively Inspired Natural Language Processing An Investigation Based on Eye-tracking /

This book shows ways of augmenting the capabilities of Natural Language Processing (NLP) systems by means of cognitive-mode language processing. The authors employ eye-tracking technology to record and analyze shallow cognitive information in the form of gaze patterns of readers/annotators who perfo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mishra, Abhijit (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Bhattacharyya, Pushpak (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Cognitive Intelligence and Robotics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04418nam a2200541 4500
001 978-981-13-1516-9
003 DE-He213
005 20190704011408.0
007 cr nn 008mamaa
008 180801s2018 si | s |||| 0|eng d
020 |a 9789811315169  |9 978-981-13-1516-9 
024 7 |a 10.1007/978-981-13-1516-9  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.N38 
072 7 |a UYQL  |2 bicssc 
072 7 |a COM073000  |2 bisacsh 
072 7 |a UYQL  |2 thema 
082 0 4 |a 006.35  |2 23 
100 1 |a Mishra, Abhijit.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Cognitively Inspired Natural Language Processing  |h [electronic resource] :  |b An Investigation Based on Eye-tracking /  |c by Abhijit Mishra, Pushpak Bhattacharyya. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XVII, 174 p. 34 illus., 30 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Intelligence and Robotics,  |x 2520-1956 
505 0 |a Chapter 1. Introduction -- Chapter 2. Eye-tracking: Theory, Methods, and Applications in Language Processing and Other Areas -- Chapter 3. Estimating Annotation Complexities of Text Using Gaze and Textual Information - Case studies of Translation and Sentiment Annotation -- Chapter 4. Scanpath Complexity: Combining Gaze Attributes for Modeling Effort in Text Reading/Annotation -- Chapter 5. Predicting Readers' Sarcasm Understandability by Modeling Gaze Behavior -- Chapter 6. Harnessing Cognitive Features for Sentiment Analysis and Sarcasm Detection -- Chapter 7. Learning Cognitive Features from Gaze Data for Sentiment and Sarcasm Classification using Convolutional Neural Network -- Chapter 8. Conclusion and Future Directions. 
520 |a This book shows ways of augmenting the capabilities of Natural Language Processing (NLP) systems by means of cognitive-mode language processing. The authors employ eye-tracking technology to record and analyze shallow cognitive information in the form of gaze patterns of readers/annotators who perform language processing tasks. The insights gained from such measures are subsequently translated into systems that help us (1) assess the actual cognitive load in text annotation, with resulting increase in human text-annotation efficiency, and (2) extract cognitive features that, when added to traditional features, can improve the accuracy of text classifiers. In sum, the authors' work successfully demonstrates that cognitive information gleaned from human eye-movement data can benefit modern NLP. Currently available Natural Language Processing (NLP) systems are weak AI systems: they seek to capture the functionality of human language processing, without worrying about how this processing is realized in human beings' hardware. In other words, these systems are oblivious to the actual cognitive processes involved in human language processing. This ignorance, however, is NOT bliss! The accuracy figures of all non-toy NLP systems saturate beyond a certain point, making it abundantly clear that "something different should be done.". 
650 0 |a Natural language processing (Computer science). 
650 0 |a Artificial intelligence. 
650 0 |a Computational linguistics. 
650 0 |a Psycholinguistics. 
650 1 4 |a Natural Language Processing (NLP).  |0 http://scigraph.springernature.com/things/product-market-codes/I21040 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Computational Linguistics.  |0 http://scigraph.springernature.com/things/product-market-codes/N22000 
650 2 4 |a Psycholinguistics.  |0 http://scigraph.springernature.com/things/product-market-codes/N35000 
700 1 |a Bhattacharyya, Pushpak.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811315152 
776 0 8 |i Printed edition:  |z 9789811315176 
776 0 8 |i Printed edition:  |z 9789811346439 
830 0 |a Cognitive Intelligence and Robotics,  |x 2520-1956 
856 4 0 |u https://doi.org/10.1007/978-981-13-1516-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)