Night Vision Processing and Understanding

This book systematically analyses the latest insights into night vision imaging processing and perceptual understanding as well as related theories and methods. The algorithm model and hardware system provided can be used as the reference basis for the general design, algorithm design and hardware d...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bai, Lianfa (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Han, Jing (http://id.loc.gov/vocabulary/relators/aut), Yue, Jiang (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04631nam a2200577 4500
001 978-981-13-1669-2
003 DE-He213
005 20191029003256.0
007 cr nn 008mamaa
008 190111s2019 si | s |||| 0|eng d
020 |a 9789811316692  |9 978-981-13-1669-2 
024 7 |a 10.1007/978-981-13-1669-2  |2 doi 
040 |d GrThAP 
050 4 |a TA1630-1650 
072 7 |a UYT  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYT  |2 thema 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
100 1 |a Bai, Lianfa.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Night Vision Processing and Understanding  |h [electronic resource] /  |c by Lianfa Bai, Jing Han, Jiang Yue. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XVI, 266 p. 177 illus., 123 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- High Snr Hyperspectral Night Vision Image Acquisition with Multiplexing -- Multi-Visual Task Based on Night Vision Data Structure and Feature Analysis -- Feature Classification Based on Manifold Dimension Reduction for Night Vision Images -- Night Vision Data Classification Based on Sparse Representation and Random Subspace -- Learning Based Night Vision Image Recognition and Object Detection -- Non-Learning Based Motion Cognitive Detection and Self-Adaptable Tracking for Night Vision Videos -- The Colorization of Low Light Level Image Based on the Rule Mining. 
520 |a This book systematically analyses the latest insights into night vision imaging processing and perceptual understanding as well as related theories and methods. The algorithm model and hardware system provided can be used as the reference basis for the general design, algorithm design and hardware design of photoelectric systems. Focusing on the differences in the imaging environment, target characteristics, and imaging methods, this book discusses multi-spectral and video data, and investigates a variety of information mining and perceptual understanding algorithms. It also assesses different processing methods for multiple types of scenes and targets. Taking into account the needs of scientists and technicians engaged in night vision optoelectronic imaging detection research, the book incorporates the latest international technical methods. The content fully reflects the technical significance and dynamics of the new field of night vision. The eight chapters cover topics including multispectral imaging, Hadamard transform spectrometry; dimensionality reduction, data mining, data analysis, feature classification, feature learning; computer vision, image understanding, target recognition, object detection and colorization algorithms, which reflect the main areas of research in artificial intelligence in night vision. The book enables readers to grasp the novelty and practicality of the field and to develop their ability to connect theory with real-world applications. It also provides the necessary foundation to allow them to conduct research in the field and adapt to new technological developments in the future. 
650 0 |a Optical data processing. 
650 0 |a Data mining. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 1 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 http://scigraph.springernature.com/things/product-market-codes/M12082 
650 2 4 |a Algorithms.  |0 http://scigraph.springernature.com/things/product-market-codes/M14018 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
700 1 |a Han, Jing.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Yue, Jiang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811316685 
776 0 8 |i Printed edition:  |z 9789811316708 
856 4 0 |u https://doi.org/10.1007/978-981-13-1669-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)