Genome Data Analysis

This textbook describes recent advances in genomics and bioinformatics and provides numerous examples of genome data analysis that illustrate its relevance to real world problems and will improve the reader's bioinformatics skills. Basic data preprocessing with normalization and filtering, prim...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kim, Ju Han (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Learning Materials in Biosciences,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04645nam a2200505 4500
001 978-981-13-1942-6
003 DE-He213
005 20191022031224.0
007 cr nn 008mamaa
008 190430s2019 si | s |||| 0|eng d
020 |a 9789811319426  |9 978-981-13-1942-6 
024 7 |a 10.1007/978-981-13-1942-6  |2 doi 
040 |d GrThAP 
050 4 |a QH324.2-324.25 
072 7 |a PSD  |2 bicssc 
072 7 |a SCI056000  |2 bisacsh 
072 7 |a PSD  |2 thema 
072 7 |a UB  |2 thema 
082 0 4 |a 570.285  |2 23 
100 1 |a Kim, Ju Han.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Genome Data Analysis  |h [electronic resource] /  |c by Ju Han Kim. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XVI, 367 p. 645 illus., 236 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Learning Materials in Biosciences,  |x 2509-6125 
505 0 |a Part 1. BIOINFORMATICS FOR LIFE AND PERSONAL GENOME INTERPRETATION -- Chapter 1. Bioinformatics For Life -- Chapter 2. Next Generation Sequencing and Personal Genome Data Analysis -- Chapter 3. Personal Genome Data Analysis -- Chapter 4. Personal Genome Interpretation and Disease Risk Prediction -- Part 2. ADVANCED MICROARRAY DATA ANALYSIS -- Chapter 5. Advanced Microarray Data Analysis -- Chapter 6. Gene Expression Data Analysis -- Chapter 7. Gene Ontology and Biological Pathway-based Analysis -- Chapter 8. Gene-set Approaches and Prognostic Subgroup Prediction -- Chapter 9. MicroRNA Data Analysis -- Part 3. NETWORK BIOLOGY, SEQUENCE, PATHWAY AND ONTOLOGY INFORMATICS -- Chapter 10. Network Biology, Sequence, Pathway and Ontology Informatics -- Chapter 11. Motif and Regulatory Sequence Analysis -- Chapter 12. Molecular Pathways and Gene Ontology -- Chapter 13. Biological Network Analysis -- Part 4. SNPS, GWAS AND CNVS, INFORMATICS FOR GENOME VARIANTS -- Chapter 14. SNPs, GWAS, CNVs: Informatics for Human Genome Variations -- Chapter 15. SNP Data Analysis -- Chapter 16. GWAS Data Analysis -- Chapter 17. CNV Data Analysis -- Part 5. METAGENOME AND EPIGENOME, BASIC DATA ANALYSIS -- Chapter 18. Metagenome and Epigenome Data Analysis -- Chapter 19. Metagenome Data Analysis -- Chapter 20. Epigenome Databases and Tools -- Chapter 21. Epigenome Data Analysis -- Appendix A. BASIC PRACTICE USING R FOR DATA ANALYSIS -- Appendix B. APPLICATION PROGRAM FOR GENOME DATA ANALYSIS INSTALL GUIDE. 
520 |a This textbook describes recent advances in genomics and bioinformatics and provides numerous examples of genome data analysis that illustrate its relevance to real world problems and will improve the reader's bioinformatics skills. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine learning algorithms using R and Python are demonstrated for gene-expression microarrays, genotyping microarrays, next-generation sequencing data, epigenomic data, and biological network and semantic analyses. In addition, detailed attention is devoted to integrative genomic data analysis, including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and integrated management of biomolecular databases. This textbook is primarily intended for life scientists, medical scientists, statisticians, data processing researchers, engineers, and other beginners in bioinformatics who are experiencing difficulty in approaching the field. However, it will also serve as a simple guideline for experts unfamiliar with the new, developing subfield of genomic analysis within bioinformatics. 
650 0 |a Bioinformatics. 
650 0 |a Medicine. 
650 0 |a Statistics . 
650 1 4 |a Bioinformatics.  |0 http://scigraph.springernature.com/things/product-market-codes/L15001 
650 2 4 |a Biomedicine, general.  |0 http://scigraph.springernature.com/things/product-market-codes/B0000X 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811319419 
776 0 8 |i Printed edition:  |z 9789811319433 
830 0 |a Learning Materials in Biosciences,  |x 2509-6125 
856 4 0 |u https://doi.org/10.1007/978-981-13-1942-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)