Applications of Artificial Intelligence Techniques in Industry 4.0

This book is to presents and evaluates a way of modelling and optimizing nonlinear RFID Network Planning (RNP) problems using artificial intelligence techniques. It uses Artificial Neural Network models (ANN) to bind together the computational artificial intelligence algorithm with knowledge represe...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Azizi, Aydin (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Applied Sciences and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03332nam a2200505 4500
001 978-981-13-2640-0
003 DE-He213
005 20191025212358.0
007 cr nn 008mamaa
008 180925s2019 si | s |||| 0|eng d
020 |a 9789811326400  |9 978-981-13-2640-0 
024 7 |a 10.1007/978-981-13-2640-0  |2 doi 
040 |d GrThAP 
050 4 |a TK1-9971 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Azizi, Aydin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Applications of Artificial Intelligence Techniques in Industry 4.0  |h [electronic resource] /  |c by Aydin Azizi. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 61 p. 50 illus., 34 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
505 0 |a Introduction -- Modern Manufacturing -- RFID Network Planning -- Hybrid Artificial Intelligence Optimization Technique -- Implementation. 
520 |a This book is to presents and evaluates a way of modelling and optimizing nonlinear RFID Network Planning (RNP) problems using artificial intelligence techniques. It uses Artificial Neural Network models (ANN) to bind together the computational artificial intelligence algorithm with knowledge representation an efficient artificial intelligence paradigm to model and optimize RFID networks. This effort leads to proposing a novel artificial intelligence algorithm which has been named hybrid artificial intelligence optimization technique to perform optimization of RNP as a hard learning problem. This hybrid optimization technique consists of two different optimization phases. First phase is optimizing RNP by Redundant Antenna Elimination (RAE) algorithm and the second phase which completes RNP optimization process is Ring Probabilistic Logic Neural Networks (RPLNN). The hybrid paradigm is explored using a flexible manufacturing system (FMS) and the results are compared with well-known evolutionary optimization technique namely Genetic Algorithm (GA) to demonstrate the feasibility of the proposed architecture successfully. 
650 0 |a Electrical engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Engineering economics. 
650 0 |a Engineering economy. 
650 1 4 |a Communications Engineering, Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/T24035 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Engineering Economics, Organization, Logistics, Marketing.  |0 http://scigraph.springernature.com/things/product-market-codes/T22016 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811326394 
776 0 8 |i Printed edition:  |z 9789811326417 
830 0 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
856 4 0 |u https://doi.org/10.1007/978-981-13-2640-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)