Symmetry Breaking for Representations of Rank One Orthogonal Groups II

This work provides the first classification theory of matrix-valued symmetry breaking operators from principal series representations of a reductive group to those of its subgroup. The study of symmetry breaking operators (intertwining operators for restriction) is an important and very active resea...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kobayashi, Toshiyuki (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Speh, Birgit (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Lecture Notes in Mathematics, 2234
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05226nam a2200625 4500
001 978-981-13-2901-2
003 DE-He213
005 20191026222512.0
007 cr nn 008mamaa
008 181227s2018 si | s |||| 0|eng d
020 |a 9789811329012  |9 978-981-13-2901-2 
024 7 |a 10.1007/978-981-13-2901-2  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Kobayashi, Toshiyuki.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Symmetry Breaking for Representations of Rank One Orthogonal Groups II  |h [electronic resource] /  |c by Toshiyuki Kobayashi, Birgit Speh. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XV, 344 p. 15 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2234 
505 0 |a 1 Introduction -- 2 Review of principal series representations -- 3 Symmetry breaking operators for principal series representations --general theory -- 4 Symmetry breaking for irreducible representations with infinitesimal character p -- 5 Regular symmetry breaking operators -- 6 Differential symmetry breaking operators -- 7 Minor summation formul related to exterior tensor ∧i(Cn) -- 8 More about principal series representations -- 9 Regular symmetry breaking operators eAi;j;;from I(i; ) to J"(j; ) -- 10 Symmetry breaking operators for irreducible representations with innitesimal character p -- 11 Application I -- 12 Application II -- 13 A conjecture -- 14 Appendix I -- 15 Appendix II -- List of Symbols -- Index. 
520 |a This work provides the first classification theory of matrix-valued symmetry breaking operators from principal series representations of a reductive group to those of its subgroup. The study of symmetry breaking operators (intertwining operators for restriction) is an important and very active research area in modern representation theory, which also interacts with various fields in mathematics and theoretical physics ranging from number theory to differential geometry and quantum mechanics. The first author initiated a program of the general study of symmetry breaking operators. The present book pursues the program by introducing new ideas and techniques, giving a systematic and detailed treatment in the case of orthogonal groups of real rank one, which will serve as models for further research in other settings. In connection to automorphic forms, this work includes a proof for a multiplicity conjecture by Gross and Prasad for tempered principal series representations in the case (SO(n + 1, 1), SO(n, 1)). The authors propose a further multiplicity conjecture for nontempered representations. Viewed from differential geometry, this seminal work accomplishes the classification of all conformally covariant operators transforming differential forms on a Riemanniann manifold X to those on a submanifold in the model space (X, Y) = (Sn, Sn-1). Functional equations and explicit formulæ of these operators are also established. This book offers a self-contained and inspiring introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in representation theory, automorphic forms, differential geometry, and theoretical physics. 
650 0 |a Mathematical physics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Number theory. 
650 0 |a Differential geometry. 
650 0 |a Partial differential equations. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Topological Groups, Lie Groups.  |0 http://scigraph.springernature.com/things/product-market-codes/M11132 
650 2 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
650 2 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 http://scigraph.springernature.com/things/product-market-codes/M12082 
700 1 |a Speh, Birgit.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811329005 
776 0 8 |i Printed edition:  |z 9789811329029 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2234 
856 4 0 |u https://doi.org/10.1007/978-981-13-2901-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)