The Periodic Unfolding Method Theory and Applications to Partial Differential Problems /
This is the first book on the subject of the periodic unfolding method (originally called "éclatement périodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open p...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Singapore :
Springer Singapore : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Σειρά: | Series in Contemporary Mathematics,
3 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Unfolding operators in fixed domains
- Advanced topics for unfolding
- Homogenization in fixed domains
- Unfolding operators in perforated domains
- Homogenization in perforated domains
- A Stokes problem in a partially porous medium
- Partial unfolding: a brief primer
- Oscillating boundaries
- Unfolding operators: the case of "small holes"
- Homogenization in domains with "small holes"
- Homogenization of an elastic thin plate
- The scale-splitting operators revisited
- * Strongly oscillating nonhomogeneous Dirichlet condition
- Some sharp error estimates.