Advances in Summability and Approximation Theory

This book discusses the Tauberian conditions under which convergence follows from statistical summability, various linear positive operators, Urysohn-type nonlinear Bernstein operators and also presents the use of Banach sequence spaces in the theory of infinite systems of differential equations. It...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Mohiuddine, S. A. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Acar, Tuncer (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04894nam a2200493 4500
001 978-981-13-3077-3
003 DE-He213
005 20191026171915.0
007 cr nn 008mamaa
008 181230s2018 si | s |||| 0|eng d
020 |a 9789811330773  |9 978-981-13-3077-3 
024 7 |a 10.1007/978-981-13-3077-3  |2 doi 
040 |d GrThAP 
050 4 |a QA292 
050 4 |a QA295 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515.24  |2 23 
245 1 0 |a Advances in Summability and Approximation Theory  |h [electronic resource] /  |c edited by S. A. Mohiuddine, Tuncer Acar. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 241 p. 10 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. A Survey for Paranormed Sequence Spaces Generated by Infinite Matrices -- Chapter 2. Tauberian Conditions under which Convergence Follows from Statistical Summability by Weighted Means -- Chapter 3. Applications of Fixed Point Theorems and General Convergence in Orthogonal Metric Spaces -- Chapter 4. Application of Measure of Noncompactness to the Infinite Systems of Second-Order Differential Equations in Banach Sequence Spaces c, lp and c0β -- Chapter 5. Infinite Systems of Differential Equations in Banach Spaces Constructed by Fibonacci Numbers -- Chapter 6. Convergence Properties of Genuine Bernstein-Durrmeyer Operators -- Chapter 7. Bivariate Szasz Type Operators Based on Multiple Appell Polynomials -- Chapter 8. Approximation Properties of Chlodowsky Variant of (P, Q) SzAsz-Mirakyan-Stancu Operators -- Chapter 9. Approximation Theorems for Positive Linear Operators Associated with Hermite and Laguerre Polynomials -- Chapter 10. On Generalized Picard Integral Operators -- Chapter 11. From Uniform to Statistical Convergence of Binomial-Type Operators -- Chapter 12. Weighted Statistically Uniform Convergence of Bögel Continuous Functions by Positive Linear Operators -- Chapter 13. Optimal Linear Approximation under General Statistical Convergence -- Chapter 14. Statistical Deferred Cesaro Summability Mean Based on (p, q)-Integers with Application to Approximation Theorems -- Chapter 15. Approximation Results for an Urysohn-type Nonlinear Bernstein Operators. 
520 |a This book discusses the Tauberian conditions under which convergence follows from statistical summability, various linear positive operators, Urysohn-type nonlinear Bernstein operators and also presents the use of Banach sequence spaces in the theory of infinite systems of differential equations. It also includes the generalization of linear positive operators in post-quantum calculus, which is one of the currently active areas of research in approximation theory. Presenting original papers by internationally recognized authors, the book is of interest to a wide range of mathematicians whose research areas include summability and approximation theory. One of the most active areas of research in summability theory is the concept of statistical convergence, which is a generalization of the familiar and widely investigated concept of convergence of real and complex sequences, and it has been used in Fourier analysis, probability theory, approximation theory and in other branches of mathematics. The theory of approximation deals with how functions can best be approximated with simpler functions. In the study of approximation of functions by linear positive operators, Bernstein polynomials play a highly significant role due to their simple and useful structure. And, during the last few decades, different types of research have been dedicated to improving the rate of convergence and decreasing the error of approximation. 
650 0 |a Sequences (Mathematics). 
650 0 |a Approximation theory. 
650 0 |a Functional analysis. 
650 1 4 |a Sequences, Series, Summability.  |0 http://scigraph.springernature.com/things/product-market-codes/M1218X 
650 2 4 |a Approximations and Expansions.  |0 http://scigraph.springernature.com/things/product-market-codes/M12023 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
700 1 |a Mohiuddine, S. A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Acar, Tuncer.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811330766 
776 0 8 |i Printed edition:  |z 9789811330780 
856 4 0 |u https://doi.org/10.1007/978-981-13-3077-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)