Fog Computing, Deep Learning and Big Data Analytics-Research Directions

This book provides a comprehensive picture of fog computing technology, including of fog architectures, latency aware application management issues with real time requirements, security and privacy issues and fog analytics, in wide ranging application scenarios such as M2M device communication, smar...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Prabhu, C.S.R (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03237nam a2200469 4500
001 978-981-13-3209-8
003 DE-He213
005 20191026141404.0
007 cr nn 008mamaa
008 190104s2019 si | s |||| 0|eng d
020 |a 9789811332098  |9 978-981-13-3209-8 
024 7 |a 10.1007/978-981-13-3209-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.B45 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Prabhu, C.S.R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fog Computing, Deep Learning and Big Data Analytics-Research Directions  |h [electronic resource] /  |c by C.S.R. Prabhu. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XIII, 71 p. 5 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Fog Application management -- Fog Analytics -- Fog Security and Privary -- Research Directions -- Conclusion. 
520 |a This book provides a comprehensive picture of fog computing technology, including of fog architectures, latency aware application management issues with real time requirements, security and privacy issues and fog analytics, in wide ranging application scenarios such as M2M device communication, smart homes, smart vehicles, augmented reality and transportation management. This book explores the research issues involved in the application of traditional shallow machine learning and deep learning techniques to big data analytics. It surveys global research advances in extending the conventional unsupervised or clustering algorithms, extending supervised and semi-supervised algorithms and association rule mining algorithms to big data Scenarios. Further it discusses the deep learning applications of big data analytics to fields of computer vision and speech processing, and describes applications such as semantic indexing and data tagging. Lastly it identifies 25 unsolved research problems and research directions in fog computing, as well as in the context of applying deep learning techniques to big data analytics, such as dimensionality reduction in high-dimensional data and improved formulation of data abstractions along with possible directions for their solutions. 
650 0 |a Big data. 
650 0 |a Data structures (Computer science). 
650 0 |a Application software. 
650 1 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Data Structures.  |0 http://scigraph.springernature.com/things/product-market-codes/I15017 
650 2 4 |a Computer Appl. in Administrative Data Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/I2301X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811332081 
776 0 8 |i Printed edition:  |z 9789811332104 
856 4 0 |u https://doi.org/10.1007/978-981-13-3209-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)