Electric-Double-Layer Coupled Oxide-Based Neuromorphic Transistors Studies

This book focuses on essential synaptic plasticity emulations and neuromorphic computing applications realized with the aid of three-terminal synaptic devices based on ion-coupled oxide-based electric-double-layer (EDL) transistors. To replicate the robust, plastic and fault-tolerant computational p...

Full description

Bibliographic Details
Main Author: Wan, Changjin (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:Full Text via HEAL-Link
Description
Summary:This book focuses on essential synaptic plasticity emulations and neuromorphic computing applications realized with the aid of three-terminal synaptic devices based on ion-coupled oxide-based electric-double-layer (EDL) transistors. To replicate the robust, plastic and fault-tolerant computational power of the human brain, the emulation of essential synaptic plasticity and computation of neurons/synapse by electronic devices are generally considered to be key steps. The book shows that the formation of an EDL at the dielectric/channel interface that slightly lags behind the stimuli can be attributed to the electrostatic coupling between ions and electrons; this mechanism underlies the emulation of short-term synaptic behaviors. Furthermore, it demonstrates that electrochemical doping/dedoping processes in the semiconducting channel by penetrated ions from electrolyte can be utilized for the emulation of long-term synaptic behaviors. Lastly, it applies these synaptic transistors in an artificial visual system to demonstrate the potential for constructing neuromorphic systems. Accordingly, the book offers a unique resource on understanding the brain-machine interface, brain-like chips, artificial cognitive systems, etc. .
Physical Description:XXI, 107 p. 77 illus., 70 illus. in color. online resource.
ISBN:9789811333149
ISSN:2190-5053
DOI:10.1007/978-981-13-3314-9