Compact and Fast Machine Learning Accelerator for IoT Devices

This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverag...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Huang, Hantao (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Yu, Hao (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Computer Architecture and Design Methodologies,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03033nam a2200505 4500
001 978-981-13-3323-1
003 DE-He213
005 20191022093108.0
007 cr nn 008mamaa
008 181207s2019 si | s |||| 0|eng d
020 |a 9789811333231  |9 978-981-13-3323-1 
024 7 |a 10.1007/978-981-13-3323-1  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Huang, Hantao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Compact and Fast Machine Learning Accelerator for IoT Devices  |h [electronic resource] /  |c by Hantao Huang, Hao Yu. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a IX, 149 p. 76 illus., 61 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computer Architecture and Design Methodologies,  |x 2367-3478 
505 0 |a Computing on Edge Devices in Internet-of-things (IoT) -- The Rise of Machine Learning in IoT system -- Least-squares-solver for Shadow Neural Network -- Tensor-solver for Deep Neural Network -- Distributed-solver for Networked Neural Network -- Conclusion. 
520 |a This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings. 
650 0 |a Computational intelligence. 
650 0 |a Microprocessors. 
650 0 |a Mathematical optimization. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Processor Architectures.  |0 http://scigraph.springernature.com/things/product-market-codes/I13014 
650 2 4 |a Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26008 
700 1 |a Yu, Hao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811333224 
776 0 8 |i Printed edition:  |z 9789811333248 
830 0 |a Computer Architecture and Design Methodologies,  |x 2367-3478 
856 4 0 |u https://doi.org/10.1007/978-981-13-3323-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)