Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms A Convex Optimization Approach /

This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is po...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Deka, Bhabesh (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Datta, Sumit (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Springer Series on Bio- and Neurosystems, 9
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04188nam a2200553 4500
001 978-981-13-3597-6
003 DE-He213
005 20191027151110.0
007 cr nn 008mamaa
008 181229s2019 si | s |||| 0|eng d
020 |a 9789811335976  |9 978-981-13-3597-6 
024 7 |a 10.1007/978-981-13-3597-6  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
072 7 |a TTBM  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TTBM  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Deka, Bhabesh.  |e author.  |0 (orcid)0000-0002-9679-6159  |1 https://orcid.org/0000-0002-9679-6159  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms  |h [electronic resource] :  |b A Convex Optimization Approach /  |c by Bhabesh Deka, Sumit Datta. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XIII, 122 p. 38 illus., 23 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series on Bio- and Neurosystems,  |x 2520-8535 ;  |v 9 
505 0 |a 1. Introduction to Compressed Sensing Magnetic Resonance Imaging -- 2. Compressed Sensing MRI Reconstruction Problem -- 3. Fast Algorithms for Compressed Sensing MRI Reconstruction -- 4. Simulation Results -- 5. Performance Evaluation and Benchmark Setting -- 6. Conclusions and Future Directions. 
520 |a This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need for the CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly useful for researchers who have just entered into the exciting field of CS-MRI and would like to quickly go through the developments to date without diving into the detailed mathematical analysis. Finally, it also discusses recent trends and future research directions for implementation of CS-MRI in clinical practice, particularly in Bio- and Neuro-informatics applications. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Biomedical engineering. 
650 0 |a Radiology. 
650 1 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a Biomedical Engineering and Bioengineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T2700X 
650 2 4 |a Imaging / Radiology.  |0 http://scigraph.springernature.com/things/product-market-codes/H29005 
700 1 |a Datta, Sumit.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811335969 
776 0 8 |i Printed edition:  |z 9789811335983 
830 0 |a Springer Series on Bio- and Neurosystems,  |x 2520-8535 ;  |v 9 
856 4 0 |u https://doi.org/10.1007/978-981-13-3597-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)