Evolutionary Learning: Advances in Theories and Algorithms

Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Zhou, Zhi-Hua (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Yu, Yang (http://id.loc.gov/vocabulary/relators/aut), Qian, Chao (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04143nam a2200493 4500
001 978-981-13-5956-9
003 DE-He213
005 20191225021425.0
007 cr nn 008mamaa
008 190522s2019 si | s |||| 0|eng d
020 |a 9789811359569  |9 978-981-13-5956-9 
024 7 |a 10.1007/978-981-13-5956-9  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Zhou, Zhi-Hua.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Evolutionary Learning: Advances in Theories and Algorithms  |h [electronic resource] /  |c by Zhi-Hua Zhou, Yang Yu, Chao Qian. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 361 p. 59 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1.Introduction -- 2. Preliminaries -- 3. Running Time Analysis: Convergence-based Analysis -- 4. Running Time Analysis: Switch Analysis -- 5. Running Time Analysis: Comparison and Unification -- 6. Approximation Analysis: SEIP -- 7. Boundary Problems of EAs -- 8. Recombination -- 9. Representation -- 10. Inaccurate Fitness Evaluation -- 11. Population -- 12. Constrained Optimization -- 13. Selective Ensemble -- 14. Subset Selection -- 15. Subset Selection: k-Submodular Maximization -- 16. Subset Selection: Ratio Minimization -- 17. Subset Selection: Noise -- 18. Subset Selection: Acceleration. . 
520 |a Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches. Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary optimization, such as recombination, representation, inaccurate fitness evaluation, and population. In closing, Part IV addresses the development of evolutionary learning algorithms with provable theoretical guarantees for several representative tasks, in which evolutionary learning offers excellent performance. . 
650 0 |a Artificial intelligence. 
650 0 |a Algorithms. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Math Applications in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17044 
700 1 |a Yu, Yang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Qian, Chao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811359552 
776 0 8 |i Printed edition:  |z 9789811359576 
856 4 0 |u https://doi.org/10.1007/978-981-13-5956-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)