High-dimensional Microarray Data Analysis Cancer Gene Diagnosis and Malignancy Indexes by Microarray /

This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks. Dis...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Shinmura, Shuichi (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04598nam a2200481 4500
001 978-981-13-5998-9
003 DE-He213
005 20191027132044.0
007 cr nn 008mamaa
008 190514s2019 si | s |||| 0|eng d
020 |a 9789811359989  |9 978-981-13-5998-9 
024 7 |a 10.1007/978-981-13-5998-9  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a MBNS  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Shinmura, Shuichi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a High-dimensional Microarray Data Analysis  |h [electronic resource] :  |b Cancer Gene Diagnosis and Malignancy Indexes by Microarray /  |c by Shuichi Shinmura. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XXV, 419 p. 261 illus., 130 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 New Theory of Discriminant Analysis and Cancer Gene Analysis -- 2 Overview of Cancer Gene Diagnosis by RIP and Revised LP-OLDF -- 3 Cancer Gene Diagnosis of Alon Microarray -- 4 Further Examinations of SMs---Defect of Revised LP-OLDF and Correlations of Genes -- 5 Cancer Gene Diagnosis of Golub et al. Microarray -- 6 Cancer Gene Diagnosis of Shipp et al. Microarray -- 7 Cancer Gene Diagnosis of Singh et al. Microarray -- 8 Cancer Gene Diagnosis of Tian et al. Microarray -- 9 Cancer Gene Diagnosis of Chiaretti et al. Microarray -- 10 LINGO Programs of Cancer Gene Analysis -- Index. 
520 |a This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks. Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratio of SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel. Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis. 
650 0 |a Statistics . 
650 0 |a Biostatistics. 
650 1 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
650 2 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Biostatistics.  |0 http://scigraph.springernature.com/things/product-market-codes/L15020 
650 2 4 |a Statistics for Social Sciences, Humanities, Law.  |0 http://scigraph.springernature.com/things/product-market-codes/S17040 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811359972 
776 0 8 |i Printed edition:  |z 9789811359996 
856 4 0 |u https://doi.org/10.1007/978-981-13-5998-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)