Data, Engineering and Applications Volume 2 /

This book presents a compilation of current trends, technologies, and challenges in connection with Big Data. Many fields of science and engineering are data-driven, or generate huge amounts of data that are ripe for the picking. There are now more sources of data than ever before, and more means of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Shukla, Rajesh Kumar (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Agrawal, Jitendra (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Sharma, Sanjeev (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Singh Tomer, Geetam (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04214nam a2200517 4500
001 978-981-13-6351-1
003 DE-He213
005 20190810151401.0
007 cr nn 008mamaa
008 190423s2019 si | s |||| 0|eng d
020 |a 9789811363511  |9 978-981-13-6351-1 
024 7 |a 10.1007/978-981-13-6351-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.B45 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
245 1 0 |a Data, Engineering and Applications  |h [electronic resource] :  |b Volume 2 /  |c edited by Rajesh Kumar Shukla, Jitendra Agrawal, Sanjeev Sharma, Geetam Singh Tomer. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a X, 343 p. 166 illus., 103 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Efficient Map-Reduce Framework Using Summation -- Secret image sharing over cloud using one dimensional chaotic map -- Design and Development of a Cloud-based Electronic Medical Records (EMR) System -- Implementation of a secure Cloud computing authentication using Elliptic curve Cryptography -- Log-based Approach for Security Implementation in Cloud CRM's -- Performance Analysis of Scheduling Algorithms in Apache Hadoop -- Energy Aware Prediction Based Load Balancing Approach with VM Migration for the Cloud Environment -- Authentication Process using Secure Sum for a New Node in Mobile Ad Hoc Network -- Certificate Revocation in Hybrid Ad-hoc Network -- NB tree based Intrusion detection technique using Rough set theory model -- An Energy Efficient Intrusion Detection System For Manet -- DDoS Attack Mitigation using Random and Flow Based Scheme -- Digital Image Watermarking Against Geometrical Attack -- Efficient key Management Approach for Vehicular Ad-hoc Network -- Image Forgery Detection: Survey and Future directions -- Comparative Study of Digital Forensic Tools -- A Systematic Survey on Mobile Forensic tools used for Forensic Analysis of Android based Social Networking Applications -- Enhanced and Secure Acknowledgement IDS in Mobile Adhoc Network by Hybrid Cryptography Technique -- Formal Verification of Causal Order Based Load Distribution Mechanism Using Event-B. 
520 |a This book presents a compilation of current trends, technologies, and challenges in connection with Big Data. Many fields of science and engineering are data-driven, or generate huge amounts of data that are ripe for the picking. There are now more sources of data than ever before, and more means of capturing data. At the same time, the sheer volume and complexity of the data have sparked new developments, where many Big Data problems require new solutions. Given its scope, the book offers a valuable reference guide for all graduate students, researchers, and scientists interested in exploring the potential of Big Data applications. 
650 0 |a Big data. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
700 1 |a Shukla, Rajesh Kumar.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Agrawal, Jitendra.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sharma, Sanjeev.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Singh Tomer, Geetam.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811363504 
776 0 8 |i Printed edition:  |z 9789811363528 
776 0 8 |i Printed edition:  |z 9789811363535 
856 4 0 |u https://doi.org/10.1007/978-981-13-6351-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)