Measure and Integration

This book deals with topics on the theory of measure and integration. It starts with discussion on the Riemann integral and points out certain shortcomings, which motivate the theory of measure and the Lebesgue integral. Most of the material in this book can be covered in a one-semester introductory...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kesavan, S. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Texts and Readings in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02656nam a2200457 4500
001 978-981-13-6678-9
003 DE-He213
005 20191028081907.0
007 cr nn 008mamaa
008 190225s2019 si | s |||| 0|eng d
020 |a 9789811366789  |9 978-981-13-6678-9 
024 7 |a 10.1007/978-981-13-6678-9  |2 doi 
040 |d GrThAP 
050 4 |a QA312-312.5 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKL  |2 thema 
082 0 4 |a 515.42  |2 23 
100 1 |a Kesavan, S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Measure and Integration  |h [electronic resource] /  |c by S. Kesavan. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XX, 232 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts and Readings in Mathematics,  |x 2366-8717 
505 0 |a Chapter 1. Measure -- Chapter 2. The Lebesgue measure -- Chapter 3. Measurable functions -- Chapter 4. Convergence -- Chapter 5. Integration -- Chapter 6. Differentiation -- Chapter 7. Change of variable -- Chapter 8. Product spaces -- Chapter 9. Signed measures -- Chapter 10. Lp spaces. 
520 |a This book deals with topics on the theory of measure and integration. It starts with discussion on the Riemann integral and points out certain shortcomings, which motivate the theory of measure and the Lebesgue integral. Most of the material in this book can be covered in a one-semester introductory course. An awareness of basic real analysis and elementary topological notions, with special emphasis on the topology of the n-dimensional Euclidean space, is the pre-requisite for this book. Each chapter is provided with a variety of exercises for the students. The book is targeted to students of graduate- and advanced-graduate-level courses on the theory of measure and integration. 
650 0 |a Measure theory. 
650 0 |a Functional analysis. 
650 1 4 |a Measure and Integration.  |0 http://scigraph.springernature.com/things/product-market-codes/M12120 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811366796 
830 0 |a Texts and Readings in Mathematics,  |x 2366-8717 
856 4 0 |u https://doi.org/10.1007/978-981-13-6678-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)