Brakke's Mean Curvature Flow An Introduction /

This book explains the notion of Brakke's mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of k-dimensional surfaces in the n-dimensional Euclidean space (1 ≤ k < n). Th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tonegawa, Yoshihiro (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03827nam a2200505 4500
001 978-981-13-7075-5
003 DE-He213
005 20191025221840.0
007 cr nn 008mamaa
008 190409s2019 si | s |||| 0|eng d
020 |a 9789811370755  |9 978-981-13-7075-5 
024 7 |a 10.1007/978-981-13-7075-5  |2 doi 
040 |d GrThAP 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKB  |2 thema 
082 0 4 |a 515.8  |2 23 
100 1 |a Tonegawa, Yoshihiro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Brakke's Mean Curvature Flow  |h [electronic resource] :  |b An Introduction /  |c by Yoshihiro Tonegawa. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 100 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
520 |a This book explains the notion of Brakke's mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of k-dimensional surfaces in the n-dimensional Euclidean space (1 ≤ k < n). The family is the mean curvature flow if the velocity of motion of surfaces is given by the mean curvature at each point and time. It is one of the simplest and most important geometric evolution problems with a strong connection to minimal surface theory. In fact, equilibrium of mean curvature flow corresponds precisely to minimal surface. Brakke's mean curvature flow was first introduced in 1978 as a mathematical model describing the motion of grain boundaries in an annealing pure metal. The grain boundaries move by the mean curvature flow while retaining singularities such as triple junction points. By using a notion of generalized surface called a varifold from geometric measure theory which allows the presence of singularities, Brakke successfully gave it a definition and presented its existence and regularity theories. Recently, the author provided a complete proof of Brakke's existence and regularity theorems, which form the content of the latter half of the book. The regularity theorem is also a natural generalization of Allard's regularity theorem, which is a fundamental regularity result for minimal surfaces and for surfaces with bounded mean curvature. By carefully presenting a minimal amount of mathematical tools, often only with intuitive explanation, this book serves as a good starting point for the study of this fascinating object as well as a comprehensive introduction to other important notions from geometric measure theory. 
650 0 |a Functions of real variables. 
650 0 |a Partial differential equations. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Differential geometry. 
650 1 4 |a Real Functions.  |0 http://scigraph.springernature.com/things/product-market-codes/M12171 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Potential Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M12163 
650 2 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811370748 
776 0 8 |i Printed edition:  |z 9789811370762 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://doi.org/10.1007/978-981-13-7075-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)