Fault Prediction Modeling for the Prediction of Number of Software Faults

This book addresses software faults-a critical issue that not only reduces the quality of software, but also increases their development costs. Various models for predicting the fault-proneness of software systems have been proposed; however, most of them provide inadequate information, limiting the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rathore, Santosh Singh (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Kumar, Sandeep (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03242nam a2200493 4500
001 978-981-13-7131-8
003 DE-He213
005 20190621001628.0
007 cr nn 008mamaa
008 190403s2019 si | s |||| 0|eng d
020 |a 9789811371318  |9 978-981-13-7131-8 
024 7 |a 10.1007/978-981-13-7131-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.758 
072 7 |a UMZ  |2 bicssc 
072 7 |a COM051230  |2 bisacsh 
072 7 |a UMZ  |2 thema 
082 0 4 |a 005.1  |2 23 
100 1 |a Rathore, Santosh Singh.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fault Prediction Modeling for the Prediction of Number of Software Faults  |h [electronic resource] /  |c by Santosh Singh Rathore, Sandeep Kumar. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XIII, 78 p. 8 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- Techniques used for the Prediction of Number of Faults -- Homogeneous Ensemble Methods for the Prediction of Number of Faults -- Linear Rule based Ensemble Methods for the prediction of Number of Faults -- Non-Linear Rule based Ensemble Methods for the prediction of Number of Faults -- Conclusions. 
520 |a This book addresses software faults-a critical issue that not only reduces the quality of software, but also increases their development costs. Various models for predicting the fault-proneness of software systems have been proposed; however, most of them provide inadequate information, limiting their effectiveness. This book focuses on the prediction of number of faults in software modules, and provides readers with essential insights into the generalized architecture, different techniques, and state-of-the art literature. In addition, it covers various software fault datasets and issues that crop up when predicting number of faults. A must-read for readers seeking a "one-stop" source of information on software fault prediction and recent research trends, the book will especially benefit those interested in pursuing research in this area. At the same time, it will provide experienced researchers with a valuable summary of the latest developments. . 
650 0 |a Software engineering. 
650 0 |a Computer industry. 
650 1 4 |a Software Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/I14029 
650 2 4 |a The Computer Industry.  |0 http://scigraph.springernature.com/things/product-market-codes/I24016 
700 1 |a Kumar, Sandeep.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811371301 
776 0 8 |i Printed edition:  |z 9789811371325 
776 0 8 |i Printed edition:  |z 9789811371332 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u https://doi.org/10.1007/978-981-13-7131-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)