When Compressive Sensing Meets Mobile Crowdsensing

This book provides a comprehensive introduction to applying compressive sensing to improve data quality in the context of mobile crowdsensing. It addresses the following main topics: recovering missing data, efficiently collecting data, preserving user privacy, and detecting false data. Mobile crowd...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kong, Linghe (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Wang, Bowen (http://id.loc.gov/vocabulary/relators/aut), Chen, Guihai (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03751nam a2200529 4500
001 978-981-13-7776-1
003 DE-He213
005 20191027151735.0
007 cr nn 008mamaa
008 190608s2019 si | s |||| 0|eng d
020 |a 9789811377761  |9 978-981-13-7776-1 
024 7 |a 10.1007/978-981-13-7776-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.59 
072 7 |a UMS  |2 bicssc 
072 7 |a COM051460  |2 bisacsh 
072 7 |a UMS  |2 thema 
082 0 4 |a 004.167  |2 23 
100 1 |a Kong, Linghe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a When Compressive Sensing Meets Mobile Crowdsensing  |h [electronic resource] /  |c by Linghe Kong, Bowen Wang, Guihai Chen. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 127 p. 39 illus., 35 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Mathematical Theory of Compressive Sensing -- Basic Compressive Sensing for Data Reconstruction -- Bayesian Compressive Sensing for Task Allocation -- Adaptive Compressive Sensing for Incentive Mechanism -- Encoded Compressive Sensing for Privacy Preservation -- Iterative Compressive Sensing for Fault Detection -- Conclusion. 
520 |a This book provides a comprehensive introduction to applying compressive sensing to improve data quality in the context of mobile crowdsensing. It addresses the following main topics: recovering missing data, efficiently collecting data, preserving user privacy, and detecting false data. Mobile crowdsensing, as an emerging sensing paradigm, enables the masses to take part in data collection tasks with the aid of powerful mobile devices. However, mobile crowdsensing platforms have yet to be widely adopted in practice, the major concern being the quality of the data collected. There are numerous causes: some locations may generate redundant data, while others may not be covered at all, since the participants are rarely systematically coordinated; privacy is a concern for some people, who don't wish to share their real-time locations, and therefore some key information may be missing; further, some participants may upload fake data in order to fraudulently gain rewards. To address these problematic aspects, compressive sensing, which works by accurately recovering a sparse signal using very few samples, has proven to offer an effective solution. . 
650 0 |a Mobile computing. 
650 0 |a Computer communication systems. 
650 0 |a Data structures (Computer science). 
650 0 |a Computers. 
650 1 4 |a Mobile Computing.  |0 http://scigraph.springernature.com/things/product-market-codes/I29060 
650 2 4 |a Computer Communication Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/I13022 
650 2 4 |a Data Structures and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15009 
650 2 4 |a Information Systems and Communication Service.  |0 http://scigraph.springernature.com/things/product-market-codes/I18008 
700 1 |a Wang, Bowen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Chen, Guihai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811377754 
776 0 8 |i Printed edition:  |z 9789811377778 
776 0 8 |i Printed edition:  |z 9789811377785 
856 4 0 |u https://doi.org/10.1007/978-981-13-7776-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)