Deep Reinforcement Learning Frontiers of Artificial Intelligence /

This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sewak, Mohit (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03399nam a2200505 4500
001 978-981-13-8285-7
003 DE-He213
005 20191024132634.0
007 cr nn 008mamaa
008 190627s2019 si | s |||| 0|eng d
020 |a 9789811382857  |9 978-981-13-8285-7 
024 7 |a 10.1007/978-981-13-8285-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.6-76.66 
072 7 |a UM  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
072 7 |a UM  |2 thema 
082 0 4 |a 005.11  |2 23 
100 1 |a Sewak, Mohit.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Deep Reinforcement Learning  |h [electronic resource] :  |b Frontiers of Artificial Intelligence /  |c by Mohit Sewak. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XVII, 203 p. 106 illus., 98 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction to Reinforcement Learning -- Mathematical and Algorithmic understanding of Reinforcement Learning -- Coding the Environment and MDP Solution -- Temporal Difference Learning, SARSA, and Q Learning -- Q Learning in Code -- Introduction to Deep Learning -- Implementation Resources -- Deep Q Network (DQN), Double DQN and Dueling DQN -- Double DQN in Code -- Policy-Based Reinforcement Learning Approaches -- Actor-Critic Models & the A3C -- A3C in Code -- Deterministic Policy Gradient and the DDPG -- DDPG in Code. 
520 |a This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code. This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds - deep learning and reinforcement learning - to tap the potential of 'advanced artificial intelligence' for creating real-world applications and game-winning algorithms. 
650 0 |a Computer programming. 
650 0 |a Artificial intelligence. 
650 0 |a Algorithms. 
650 0 |a Data encryption (Computer science). 
650 1 4 |a Programming Techniques.  |0 http://scigraph.springernature.com/things/product-market-codes/I14010 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Cryptology.  |0 http://scigraph.springernature.com/things/product-market-codes/I28020 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811382840 
776 0 8 |i Printed edition:  |z 9789811382864 
776 0 8 |i Printed edition:  |z 9789811382871 
856 4 0 |u https://doi.org/10.1007/978-981-13-8285-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)