Deep Reinforcement Learning Frontiers of Artificial Intelligence /

This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sewak, Mohit (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction to Reinforcement Learning
  • Mathematical and Algorithmic understanding of Reinforcement Learning
  • Coding the Environment and MDP Solution
  • Temporal Difference Learning, SARSA, and Q Learning
  • Q Learning in Code
  • Introduction to Deep Learning
  • Implementation Resources
  • Deep Q Network (DQN), Double DQN and Dueling DQN
  • Double DQN in Code
  • Policy-Based Reinforcement Learning Approaches
  • Actor-Critic Models & the A3C
  • A3C in Code
  • Deterministic Policy Gradient and the DDPG
  • DDPG in Code.