Hecke's L-functions Spring, 1964 /

This volume contains the notes originally made by Kenkichi Iwasawa in his own handwriting for his lecture course at Princeton University in 1964. These notes give a beautiful and completely detailed account of the adelic approach to Hecke's L-functions attached to any number field, including th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Iwasawa, Kenkichi (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03067nam a2200493 4500
001 978-981-13-9495-9
003 DE-He213
005 20191027091236.0
007 cr nn 008mamaa
008 190903s2019 si | s |||| 0|eng d
020 |a 9789811394959  |9 978-981-13-9495-9 
024 7 |a 10.1007/978-981-13-9495-9  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Iwasawa, Kenkichi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hecke's L-functions  |h [electronic resource] :  |b Spring, 1964 /  |c by Kenkichi Iwasawa. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XI, 93 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
520 |a This volume contains the notes originally made by Kenkichi Iwasawa in his own handwriting for his lecture course at Princeton University in 1964. These notes give a beautiful and completely detailed account of the adelic approach to Hecke's L-functions attached to any number field, including the proof of analytic continuation, the functional equation of these L-functions, and the class number formula arising from the Dedekind zeta function for a general number field. This adelic approach was discovered independently by Iwasawa and Tate around 1950 and marked the beginning of the whole modern adelic approach to automorphic forms and L-series. While Tate's thesis at Princeton in 1950 was finally published in 1967 in the volume Algebraic Number Theory, edited by Cassels and Frohlich, no detailed account of Iwasawa's work has been published until now, and this volume is intended to fill the gap in the literature of one of the key areas of modern number theory. In the final chapter, Iwasawa elegantly explains some important classical results, such as the distribution of prime ideals and the class number formulae for cyclotomic fields. 
650 0 |a Number theory. 
650 0 |a Functions of complex variables. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 1 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
650 2 4 |a Functions of a Complex Variable.  |0 http://scigraph.springernature.com/things/product-market-codes/M12074 
650 2 4 |a Field Theory and Polynomials.  |0 http://scigraph.springernature.com/things/product-market-codes/M11051 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811394942 
776 0 8 |i Printed edition:  |z 9789811394966 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://doi.org/10.1007/978-981-13-9495-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)