Incompleteness for Higher-Order Arithmetic An Example Based on Harrington's Principle /

The book examines the following foundation question: are all theorems in classic mathematics which are expressible in second order arithmetic provable in second order arithmetic? In this book, the author gives a counterexample for this question and isolates this counterexample from Martin-Harrington...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cheng, Yong (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02677nam a2200469 4500
001 978-981-13-9949-7
003 DE-He213
005 20191027033022.0
007 cr nn 008mamaa
008 190830s2019 si | s |||| 0|eng d
020 |a 9789811399497  |9 978-981-13-9949-7 
024 7 |a 10.1007/978-981-13-9949-7  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBC  |2 thema 
072 7 |a PBCD  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Cheng, Yong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Incompleteness for Higher-Order Arithmetic  |h [electronic resource] :  |b An Example Based on Harrington's Principle /  |c by Yong Cheng. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XIV, 122 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Introduction and Preliminary -- A minimal system -- The Boldface Martin-Harrington Theorem in Z2 -- Strengthenings of Harrington's Principle -- Forcing a model of Harrington's Principle without reshaping -- The strong reflecting property for L-cardinals. 
520 |a The book examines the following foundation question: are all theorems in classic mathematics which are expressible in second order arithmetic provable in second order arithmetic? In this book, the author gives a counterexample for this question and isolates this counterexample from Martin-Harrington theorem in set theory. It shows that the statement "Harrington's principle implies zero sharp" is not provable in second order arithmetic. The book also examines what is the minimal system in higher order arithmetic to show that Harrington's principle implies zero sharp and the large cardinal strength of Harrington's principle and its strengthening over second and third order arithmetic. . 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematical Logic and Foundations.  |0 http://scigraph.springernature.com/things/product-market-codes/M24005 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811399480 
776 0 8 |i Printed edition:  |z 9789811399503 
776 0 8 |i Printed edition:  |z 9789811399510 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://doi.org/10.1007/978-981-13-9949-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)