A Statistical Mechanical Interpretation of Algorithmic Information Theory

This book is the first one that provides a solid bridge between algorithmic information theory and statistical mechanics. Algorithmic information theory (AIT) is a theory of program size and recently is also known as algorithmic randomness. AIT provides a framework for characterizing the notion of r...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tadaki, Kohtaro (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Mathematical Physics, 36
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05011nam a2200529 4500
001 978-981-15-0739-7
003 DE-He213
005 20191111125859.0
007 cr nn 008mamaa
008 191111s2019 si | s |||| 0|eng d
020 |a 9789811507397  |9 978-981-15-0739-7 
024 7 |a 10.1007/978-981-15-0739-7  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Tadaki, Kohtaro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Statistical Mechanical Interpretation of Algorithmic Information Theory  |h [electronic resource] /  |c by Kohtaro Tadaki. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XI, 136 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 36 
505 0 |a Statistical Mechanical Interpretation of Noiseless Source Coding -- Algorithmic Information Theory -- Partial Randomness -- Temperature Equals to Partial Randomness -- Fixed Point Theorems on Partial Randomness -- Statistical Mechanical Meaning of the Thermodynamic Quantities of AIT -- The Partial Randomness of Recursively Enumerable Reals -- Computation-Theoretic Clarification of the Phase Transition at Temperature T=1 -- Other Related Results and Future Development. . 
520 |a This book is the first one that provides a solid bridge between algorithmic information theory and statistical mechanics. Algorithmic information theory (AIT) is a theory of program size and recently is also known as algorithmic randomness. AIT provides a framework for characterizing the notion of randomness for an individual object and for studying it closely and comprehensively. In this book, a statistical mechanical interpretation of AIT is introduced while explaining the basic notions and results of AIT to the reader who has an acquaintance with an elementary theory of computation. A simplification of the setting of AIT is the noiseless source coding in information theory. First, in the book, a statistical mechanical interpretation of the noiseless source coding scheme is introduced. It can be seen that the notions in statistical mechanics such as entropy, temperature, and thermal equilibrium are translated into the context of noiseless source coding in a natural manner. Then, the framework of AIT is introduced. On this basis, the introduction of a statistical mechanical interpretation of AIT is begun. Namely, the notion of thermodynamic quantities, such as free energy, energy, and entropy, is introduced into AIT. In the interpretation, the temperature is shown to be equal to the partial randomness of the values of all these thermodynamic quantities, where the notion of partial randomness is a stronger representation of the compression rate measured by means of program-size complexity. Additionally, it is demonstrated that this situation holds for the temperature itself as a thermodynamic quantity. That is, for each of all the thermodynamic quantities above, the computability of its value at temperature T gives a sufficient condition for T to be a fixed point on partial randomness. In this groundbreaking book, the current status of the interpretation from both mathematical and physical points of view is reported. For example, a total statistical mechanical interpretation of AIT that actualizes a perfect correspondence to normal statistical mechanics can be developed by identifying a microcanonical ensemble in the framework of AIT. As a result, the statistical mechanical meaning of the thermodynamic quantities of AIT is clarified. In the book, the close relationship of the interpretation to Landauer's principle is pointed out. 
650 0 |a Mathematical physics. 
650 0 |a Algorithms. 
650 0 |a Data structures (Computer science). 
650 0 |a Statistical physics. 
650 1 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Algorithms.  |0 http://scigraph.springernature.com/things/product-market-codes/M14018 
650 2 4 |a Data Structures and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15009 
650 2 4 |a Statistical Physics and Dynamical Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P19090 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811507380 
776 0 8 |i Printed edition:  |z 9789811507403 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 36 
856 4 0 |u https://doi.org/10.1007/978-981-15-0739-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)