Statistics and Data Science Research School on Statistics and Data Science, RSSDS 2019, Melbourne, VIC, Australia, July 24-26, 2019, Proceedings /

This book constitutes the proceedings of the Research School on Statistics and Data Science, RSSDS 2019, held in Melbourne, VIC, Australia, in July 2019. The 11 papers presented in this book were carefully reviewed and selected from 23 submissions. The volume also contains 7 invited talks. The works...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Nguyen, Hien (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Communications in Computer and Information Science, 1150
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04366nam a2200529 4500
001 978-981-15-1960-4
003 DE-He213
005 20200103013958.0
007 cr nn 008mamaa
008 200103s2019 si | s |||| 0|eng d
020 |a 9789811519604  |9 978-981-15-1960-4 
024 7 |a 10.1007/978-981-15-1960-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
072 7 |a UYAM  |2 thema 
072 7 |a UFM  |2 thema 
082 0 4 |a 005.55  |2 23 
245 1 0 |a Statistics and Data Science  |h [electronic resource] :  |b Research School on Statistics and Data Science, RSSDS 2019, Melbourne, VIC, Australia, July 24-26, 2019, Proceedings /  |c edited by Hien Nguyen. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a X, 263 p. 152 illus., 66 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Communications in Computer and Information Science,  |x 1865-0929 ;  |v 1150 
505 0 |a Invited Papers -- Symbolic Formulae for Linear Mixed Models -- code::proof: Prepare for most weather conditions -- Regularized Estimation and Feature Selection in Mixtures of Gaussian-Gated Experts Models -- Flexible Modelling via Multivariate Skew Distributions -- Estimating occupancy and fitting models with the two-stage approach -- Component elimination strategies for mixtures of multiple scale distributions -- An introduction to approximate Bayesian computation -- Contributing Papers -- Truth, Proof, and Reproducibility: There's no counter-attack for the codeless -- On Adaptive Gauss-Hermite Quadrature for Estimation in GLMM's -- Deep learning with periodic features and applications in particle physics -- Copula Modelling of Nurses' Agitation-Sedation Rating of ICU Patients -- Predicting the whole distribution with methods for depth data analysis demonstrated on a colorectal cancer treatment study -- Resilient and Deep Network for Internet of Things (IoT) Malware Detection -- Prediction of Neurological Deterioration of Patients with Mild Traumatic Brain Injury using Machine Learning -- Spherical data handling and analysis with R package rcosmo -- On the Parameter Estimation in the Schwartz-Smith's Two-Factor Model -- Interval estimators for inequality measures using grouped data -- Exact model averaged tail area confidence intervals. . 
520 |a This book constitutes the proceedings of the Research School on Statistics and Data Science, RSSDS 2019, held in Melbourne, VIC, Australia, in July 2019. The 11 papers presented in this book were carefully reviewed and selected from 23 submissions. The volume also contains 7 invited talks. The workshop brought together academics, researchers, and industry practitioners of statistics and data science, to discuss numerous advances in the disciplines and their impact on the sciences and society. The topics covered are data analysis, data science, data mining, data visualization, bioinformatics, machine learning, neural networks, statistics, and probability. . 
650 0 |a Mathematical statistics. 
650 0 |a Machine learning. 
650 0 |a Database management. 
650 0 |a Operating systems (Computers). 
650 1 4 |a Probability and Statistics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17036 
650 2 4 |a Machine Learning.  |0 http://scigraph.springernature.com/things/product-market-codes/I21010 
650 2 4 |a Database Management.  |0 http://scigraph.springernature.com/things/product-market-codes/I18024 
650 2 4 |a Operating Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/I14045 
700 1 |a Nguyen, Hien.  |e editor.  |0 (orcid)0000-0002-9958-432X  |1 https://orcid.org/0000-0002-9958-432X  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811519598 
776 0 8 |i Printed edition:  |z 9789811519611 
830 0 |a Communications in Computer and Information Science,  |x 1865-0929 ;  |v 1150 
856 4 0 |u https://doi.org/10.1007/978-981-15-1960-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)