Non-metrisable Manifolds

Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifol...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gauld, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02937nam a22004935i 4500
001 978-981-287-257-9
003 DE-He213
005 20151116133620.0
007 cr nn 008mamaa
008 141204s2014 si | s |||| 0|eng d
020 |a 9789812872579  |9 978-981-287-257-9 
024 7 |a 10.1007/978-981-287-257-9  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a PBPH  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.34  |2 23 
100 1 |a Gauld, David.  |e author. 
245 1 0 |a Non-metrisable Manifolds  |h [electronic resource] /  |c by David Gauld. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 203 p. 51 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Topological Manifolds -- Edge of the World: When are Manifolds Metrisable? -- Geometric Tools -- Type I Manifolds and the Bagpipe Theorem -- Homeomorphisms and Dynamics on Non-Metrisable Manifolds -- Are Perfectly Normal Manifolds Metrisable? -- Smooth Manifolds -- Foliations on Non-Metrisable Manifolds -- Non-Hausdorff Manifolds and Foliations. 
520 |a Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifolds, are much more abundant but have a more modest history, having become of increasing interest only over the past 40 years or so. The first book on this topic, this book ranges from criteria for metrisability, dynamics on non-metrisable manifolds, Nyikos’s Bagpipe Theorem and whether perfectly normal manifolds are metrisable to structures on manifolds, especially the abundance of exotic differential structures and the dearth of foliations on the long plane. A rigid foliation of the Euclidean plane is described. This book is intended for graduate students and mathematicians who are curious about manifolds beyond the metrisability wall, and especially the use of Set Theory as a tool. 
650 0 |a Mathematics. 
650 0 |a Algebraic topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Statistical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Nonlinear Dynamics. 
650 2 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789812872562 
856 4 0 |u http://dx.doi.org/10.1007/978-981-287-257-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)