Non-metrisable Manifolds
Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifol...
Κύριος συγγραφέας: | Gauld, David (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Singapore :
Springer Singapore : Imprint: Springer,
2014.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Introduction to Topological Manifolds
ανά: Lee, John M.
Έκδοση: (2011) -
Simplicial Structures in Topology
ανά: Ferrario, Davide L., κ.ά.
Έκδοση: (2011) -
A Cp-Theory Problem Book Topological and Function Spaces /
ανά: Tkachuk, Vladimir V.
Έκδοση: (2011) -
A Guide to the Classification Theorem for Compact Surfaces
ανά: Gallier, Jean, κ.ά.
Έκδοση: (2013) -
Introduction to Topological Manifolds
ανά: Lee, John M.
Έκδοση: (2000)