Non-metrisable Manifolds

Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifol...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gauld, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Topological Manifolds
  • Edge of the World: When are Manifolds Metrisable?
  • Geometric Tools
  • Type I Manifolds and the Bagpipe Theorem
  • Homeomorphisms and Dynamics on Non-Metrisable Manifolds
  • Are Perfectly Normal Manifolds Metrisable?
  • Smooth Manifolds
  • Foliations on Non-Metrisable Manifolds
  • Non-Hausdorff Manifolds and Foliations.