Grammar-Based Feature Generation for Time-Series Prediction

This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounde...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: De Silva, Anthony Mihirana (Συγγραφέας), Leong, Philip H. W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2015.
Σειρά:SpringerBriefs in Applied Sciences and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03210nam a22004935i 4500
001 978-981-287-411-5
003 DE-He213
005 20151103123630.0
007 cr nn 008mamaa
008 150214s2015 si | s |||| 0|eng d
020 |a 9789812874115  |9 978-981-287-411-5 
024 7 |a 10.1007/978-981-287-411-5  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a De Silva, Anthony Mihirana.  |e author. 
245 1 0 |a Grammar-Based Feature Generation for Time-Series Prediction  |h [electronic resource] /  |c by Anthony Mihirana De Silva, Philip H. W. Leong. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 99 p. 28 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
505 0 |a Introduction -- Feature Selection -- Grammatical Evolution -- Grammar Based Feature Generation -- Application of Grammar Framework to Time-series Prediction -- Case Studies -- Conclusion. 
520 |a This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself. Industrial applications can use the proposed technique to improve their predictions. 
650 0 |a Engineering. 
650 0 |a Pattern recognition. 
650 0 |a Economics, Mathematical. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Quantitative Finance. 
700 1 |a Leong, Philip H. W.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789812874108 
830 0 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
856 4 0 |u http://dx.doi.org/10.1007/978-981-287-411-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)