Visual Quality Assessment by Machine Learning

The book encompasses the state-of-the-art visual quality assessment (VQA) and learning based visual quality assessment (LB-VQA) by providing a comprehensive overview of the existing relevant methods. It delivers the readers the basic knowledge, systematic overview and new development of VQA. It also...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Xu, Long (Συγγραφέας), Lin, Weisi (Συγγραφέας), Kuo, C.-C. Jay (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2015.
Σειρά:SpringerBriefs in Electrical and Computer Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02793nam a22005415i 4500
001 978-981-287-468-9
003 DE-He213
005 20151103124823.0
007 cr nn 008mamaa
008 150509s2015 si | s |||| 0|eng d
020 |a 9789812874689  |9 978-981-287-468-9 
024 7 |a 10.1007/978-981-287-468-9  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Xu, Long.  |e author. 
245 1 0 |a Visual Quality Assessment by Machine Learning  |h [electronic resource] /  |c by Long Xu, Weisi Lin, C.-C. Jay Kuo. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 132 p. 19 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a Introduction -- Fundamental knowledges of machine learning -- Image features and feature processing -- Feature pooling by learning -- Metrics fusion -- Summary and remarks for future research. 
520 |a The book encompasses the state-of-the-art visual quality assessment (VQA) and learning based visual quality assessment (LB-VQA) by providing a comprehensive overview of the existing relevant methods. It delivers the readers the basic knowledge, systematic overview and new development of VQA. It also encompasses the preliminary knowledge of Machine Learning (ML) to VQA tasks and newly developed ML techniques for the purpose. Hence, firstly, it is particularly helpful to the beginner-readers (including research students) to enter into VQA field in general and LB-VQA one in particular. Secondly, new development in VQA and LB-VQA particularly are detailed in this book, which will give peer researchers and engineers new insights in VQA. 
650 0 |a Engineering. 
650 0 |a Image processing. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Computational Intelligence. 
700 1 |a Lin, Weisi.  |e author. 
700 1 |a Kuo, C.-C. Jay.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789812874672 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u http://dx.doi.org/10.1007/978-981-287-468-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)