Semi-Supervised Dependency Parsing

This book presents a comprehensive overview of semi-supervised approaches to dependency parsing. Having become increasingly popular in recent years, one of the main reasons for their success is that they can make use of large unlabeled data together with relatively small labeled data and have shown...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chen, Wenliang (Συγγραφέας), Zhang, Min (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02593nam a22004335i 4500
001 978-981-287-552-5
003 DE-He213
005 20150716151803.0
007 cr nn 008mamaa
008 150716s2015 si | s |||| 0|eng d
020 |a 9789812875525  |9 978-981-287-552-5 
024 7 |a 10.1007/978-981-287-552-5  |2 doi 
040 |d GrThAP 
050 4 |a P98-98.5 
072 7 |a CFX  |2 bicssc 
072 7 |a LAN009000  |2 bisacsh 
072 7 |a COM018000  |2 bisacsh 
082 0 4 |a 410.285  |2 23 
100 1 |a Chen, Wenliang.  |e author. 
245 1 0 |a Semi-Supervised Dependency Parsing  |h [electronic resource] /  |c by Wenliang Chen, Min Zhang. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2015. 
300 |a VIII, 144 p. 61 illus., 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Introduction -- 2 Dependency Parsing Models -- 3 Overview of Semi-supervised Dependency Parsing Approaches -- 4 Training with Auto-parsed Whole Trees -- 5 Training with Lexical Information -- 6 Training with Bilexical Dependencies -- 7 Training with Subtree Structures -- 8 Training with Dependency Language Models -- 9 Training with Meta Features -- 10 Closing Remarks. 
520 |a This book presents a comprehensive overview of semi-supervised approaches to dependency parsing. Having become increasingly popular in recent years, one of the main reasons for their success is that they can make use of large unlabeled data together with relatively small labeled data and have shown their advantages in the context of dependency parsing for many languages. Various semi-supervised dependency parsing approaches have been proposed in recent works which utilize different types of information gleaned from unlabeled data. The book offers readers a comprehensive introduction to these approaches, making it ideally suited as a textbook for advanced undergraduate and graduate students and researchers in the fields of syntactic parsing and natural language processing. 
650 0 |a Linguistics. 
650 0 |a Computational linguistics. 
650 1 4 |a Linguistics. 
650 2 4 |a Computational Linguistics. 
700 1 |a Zhang, Min.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789812875518 
856 4 0 |u http://dx.doi.org/10.1007/978-981-287-552-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SHU 
950 |a Humanities, Social Sciences and Law (Springer-11648)