Jump SDEs and the Study of Their Densities A Self-Study Book /

The present book deals with a streamlined presentation of Lévy processes and their densities. It is directed at advanced undergraduates who have already completed a basic probability course. Poisson random variables, exponential random variables, and the introduction of Poisson processes are presen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kohatsu-Higa, Arturo (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Takeuchi, Atsushi (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04256nam a2200529 4500
001 978-981-32-9741-8
003 DE-He213
005 20191023152223.0
007 cr nn 008mamaa
008 190813s2019 si | s |||| 0|eng d
020 |a 9789813297418  |9 978-981-32-9741-8 
024 7 |a 10.1007/978-981-32-9741-8  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Kohatsu-Higa, Arturo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Jump SDEs and the Study of Their Densities  |h [electronic resource] :  |b A Self-Study Book /  |c by Arturo Kohatsu-Higa, Atsushi Takeuchi. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XIX, 355 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Review of some basic concepts of probability theory -- Simple Poisson process and its corresponding SDEs -- Compound Poisson process and its associated stochastic calculus -- Construction of Lévy processes and their corresponding SDEs: The finite variation case -- Construction of Lévy processes and their corresponding SDEs: The infinite variation case -- Multi-dimensional Lévy processes and their densities -- Flows associated with stochastic differential equations with jumps -- Overview -- Techniques to study the density -- Basic ideas for integration by parts formulas -- Sensitivity formulas -- Integration by parts: Norris method -- A non-linear example: The Boltzmann equation -- Further hints for the exercises . 
520 |a The present book deals with a streamlined presentation of Lévy processes and their densities. It is directed at advanced undergraduates who have already completed a basic probability course. Poisson random variables, exponential random variables, and the introduction of Poisson processes are presented first, followed by the introduction of Poisson random measures in a simple case. With these tools the reader proceeds gradually to compound Poisson processes, finite variation Lévy processes and finally one-dimensional stable cases. This step-by-step progression guides the reader into the construction and study of the properties of general Lévy processes with no Brownian component. In particular, in each case the corresponding Poisson random measure, the corresponding stochastic integral, and the corresponding stochastic differential equations (SDEs) are provided. The second part of the book introduces the tools of the integration by parts formula for jump processes in basic settings and first gradually provides the integration by parts formula in finite-dimensional spaces and gives a formula in infinite dimensions. These are then applied to stochastic differential equations in order to determine the existence and some properties of their densities. As examples, instances of the calculations of the Greeks in financial models with jumps are shown. The final chapter is devoted to the Boltzmann equation. 
650 0 |a Probabilities. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
700 1 |a Takeuchi, Atsushi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789813297401 
776 0 8 |i Printed edition:  |z 9789813297425 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u https://doi.org/10.1007/978-981-32-9741-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)