Jump SDEs and the Study of Their Densities A Self-Study Book /

The present book deals with a streamlined presentation of Lévy processes and their densities. It is directed at advanced undergraduates who have already completed a basic probability course. Poisson random variables, exponential random variables, and the introduction of Poisson processes are presen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kohatsu-Higa, Arturo (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Takeuchi, Atsushi (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Review of some basic concepts of probability theory
  • Simple Poisson process and its corresponding SDEs
  • Compound Poisson process and its associated stochastic calculus
  • Construction of Lévy processes and their corresponding SDEs: The finite variation case
  • Construction of Lévy processes and their corresponding SDEs: The infinite variation case
  • Multi-dimensional Lévy processes and their densities
  • Flows associated with stochastic differential equations with jumps
  • Overview
  • Techniques to study the density
  • Basic ideas for integration by parts formulas
  • Sensitivity formulas
  • Integration by parts: Norris method
  • A non-linear example: The Boltzmann equation
  • Further hints for the exercises .