Orthogonal Image Moments for Human-Centric Visual Pattern Recognition

Instead of focusing on the mathematical properties of moments, this book is a compendium of research that demonstrates the effectiveness of orthogonal moment-based features in face recognition, expression recognition, fingerprint recognition and iris recognition. The usefulness of moments and their...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rahman, S. M. Mahbubur (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Howlader, Tamanna (http://id.loc.gov/vocabulary/relators/aut), Hatzinakos, Dimitrios (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Cognitive Intelligence and Robotics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03304nam a2200481 4500
001 978-981-32-9945-0
003 DE-He213
005 20191028151851.0
007 cr nn 008mamaa
008 191011s2019 si | s |||| 0|eng d
020 |a 9789813299450  |9 978-981-32-9945-0 
024 7 |a 10.1007/978-981-32-9945-0  |2 doi 
040 |d GrThAP 
050 4 |a TA1630-1650 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
100 1 |a Rahman, S. M. Mahbubur.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Orthogonal Image Moments for Human-Centric Visual Pattern Recognition  |h [electronic resource] /  |c by S. M. Mahbubur Rahman, Tamanna Howlader, Dimitrios Hatzinakos. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 149 p. 58 illus., 42 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Intelligence and Robotics,  |x 2520-1956 
505 0 |a 1 Introduction -- 2 Image Moments -- 3 Face Recognition -- 4 Expression Recognition -- 5 Fingerprint Classification -- 6 Iris Recognition -- 7 Hand Gesture Recognition -- 8 Conclusion. 
520 |a Instead of focusing on the mathematical properties of moments, this book is a compendium of research that demonstrates the effectiveness of orthogonal moment-based features in face recognition, expression recognition, fingerprint recognition and iris recognition. The usefulness of moments and their invariants in pattern recognition is well known. What is less well known is how orthogonal moments may be applied to specific problems in human-centric visual pattern recognition. Unlike previous books, this work highlights the fundamental issues involved in moment-based pattern recognition, from the selection of discriminative features in a high-dimensional setting, to addressing the question of how to classify a large number of patterns based on small training samples. In addition to offering new concepts that illustrate the use of statistical methods in addressing some of these issues, the book presents recent results and provides guidance on implementing the methods. Accordingly, it will be of interest to researchers and graduate students working in the broad areas of computer vision and visual pattern recognition. 
650 0 |a Optical data processing. 
650 1 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics.  |0 http://scigraph.springernature.com/things/product-market-codes/I22005 
700 1 |a Howlader, Tamanna.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Hatzinakos, Dimitrios.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789813299443 
776 0 8 |i Printed edition:  |z 9789813299467 
776 0 8 |i Printed edition:  |z 9789813299474 
830 0 |a Cognitive Intelligence and Robotics,  |x 2520-1956 
856 4 0 |u https://doi.org/10.1007/978-981-32-9945-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)