Wavelet Solutions for Reaction-Diffusion Problems in Science and Engineering
The book focuses on how to implement discrete wavelet transform methods in order to solve problems of reaction-diffusion equations and fractional-order differential equations that arise when modelling real physical phenomena. It explores the analytical and numerical approximate solutions obtained by...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Singapore :
Springer Singapore : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Forum for Interdisciplinary Mathematics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Reaction-Diffusion Problems
- 2. Wavelet Analysis - An Overview
- 3. Shifted Chebyshev Wavelets and Shifted Legendre Wavelets - Preliminaries
- 4. Wavelet Method to Film-Pore Diffusion Model for Methylene Blue Adsorption onto Plant Leaf Powders
- 5. An Efficient Wavelet-based Spectral Method to Singular Boundary Value Problems
- 6. Analytical Expressions of Amperometric Enzyme Kinetics Pertaining to the Substrate Concentration using Wavelets
- 7 Haar Wavelet Method for Solving Some Nonlinear Parabolic Equations
- 8. An Efficient Wavelet-based Approximation Method to Gene Propagation Model Arising in Population Biology
- 9. Two Reliable Wavelet Methods for Fitzhugh-Nagumo (FN) and Fractional FN Equations
- 10. A New Coupled Wavelet-based Method Applied to the Nonlinear Reaction-Diffusion Equation Arising in Mathematical Chemistry
- 11. Wavelet based Analytical Expressions to Steady State Biofilm Model Arising in Biochemical Engineering. .