A machine learning, artificial intelligence approach to institutional effectiveness in higher education /

The Institutional Research profession is currently experimenting with many strategies to assess institutional effectiveness in a manner that reflects the letter and spirit of their unique mission, vision, and values. While a "best-practices" approach to the measurement and assessment of in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Moye, John N. (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Bingley, U.K. : Emerald Publishing Limited, 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03512nam a2200397 4500
001 9781789738995
003 UtOrBLW
005 20190715103526.0
006 m o d
007 cr un|||||||||
008 190715t20192019enk ob 001 0 eng d
020 |a 9781789738995 (e-book) 
040 |a UtOrBLW  |b eng  |e rda  |c UtOrBLW  |d GrThAP 
050 4 |a LB2341  |b .M69 2019 
072 7 |a JN  |2 bicssc 
072 7 |a EDU015000  |2 bisacsh 
080 |a 378 
082 0 4 |a 378.101  |2 23 
100 1 |a Moye, John N.,  |e author. 
245 1 2 |a A machine learning, artificial intelligence approach to institutional effectiveness in higher education /  |c John N. Moye. 
264 1 |a Bingley, U.K. :  |b Emerald Publishing Limited,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource (xiii, 232 pages) ;  |c cm 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Prelims -- Chapter 1: Defining, measuring, and assessing effectiveness -- Chapter 2: Creating shared mission, vision, and values -- Chapter 3: Measuring and assessing program structure: intended performance -- Chapter 4: Measuring and assessing instruction: intended performance -- Chapter 5: Measuring and assessing support services: intended performance -- Chapter 6: Functional data modeling: identifying the drivers and constraints of actual performance -- Chapter 7: Institutional data modeling: looking beyond the data -- Chapter 8: Continuous quality improvement -- Afterword -- References -- Index. 
520 |a The Institutional Research profession is currently experimenting with many strategies to assess institutional effectiveness in a manner that reflects the letter and spirit of their unique mission, vision, and values. While a "best-practices" approach to the measurement and assessment of institutional functions is prevalent in the literature, a machine learning approach that synthesizes these parts into a coherent and synergistic approach has not emerged.A Machine Learning, Artificial Intelligence Approach to Institutional Effectiveness in Higher Education presents a practical, effective, and systematic approach to the measurement, assessment, and sensemaking of institutional performance. Included are instruments and strategies to measure and assess the performance of Curriculum, Learning, Instruction, Support Services, and Program Feasibility as well as a meaningful Environmental Scanning method. The data collected in this system are organized into assessments of institutional effectiveness through the application of machine learning data processes that create an artificial intelligence model of actual institutional performance from the raw performance data. This artificial intelligence is visualized through five organizational sensemaking approaches to monitor, demonstrate, and improve institutional performance. Thus, this book provides a set of tools that can be adopted or adapted to the specific intentions of any institution, making it an invaluable resource for Higher Education administrators, leaders and practitioners.  
588 0 |a Print version record 
650 0 |a Education, Higher  |x Management. 
650 0 |a Organizational effectiveness  |x Measurement. 
650 7 |a Education  |x Higher.  |2 bisacsh 
650 7 |a Education.  |2 bicssc 
776 |z 9781789739008 
856 4 0 |u https://www.emerald.com/insight/publication/doi/10.1108/9781789738995  |z Full Text via HEAL-Link