Λογισμός συναρτήσεων μιας μεταβλητής
Το σύγγραμμα προορίζεται για χρήση στη διδασκαλία της βασικής θεωρίας του Λογισμού συναρτήσεων μιας μεταβλητής. Απευθύνεται σε πρωτοετείς φοιτητές Ελληνικών Πανεπιστημίων, και λαμβάνει υπόψιν τις γνώσεις που έχουν αφομοιώσει στο Λύκειο και ιδιαιτέρως κατά την προετοιμασία τους για τις Πανελλήνιες Εξ...
Main Authors: | , , , |
---|---|
Format: | 1 |
Language: | Greek |
Published: |
2016
|
Subjects: | |
Online Access: | http://repository.kallipos.gr/handle/11419/2177 http://dx.doi.org/10.57713/kallipos-796 |
id |
kallipos-11419-2177 |
---|---|
record_format |
dspace |
spelling |
kallipos-11419-21772024-04-15T19:55:17Z Λογισμός συναρτήσεων μιας μεταβλητής Εισαγωγή στον Λογισμό Συναρτήσεων μιας Μεταβλητής για πρωτοετείς φοιτητές Τουμπής, Σταύρος Γκιτζένης, Σάββας Toumpis, Stavros Gitzenis, Savvas Λογισμός Συναρτήσεων μιας Μεταβλητής Συνάρτηση Ακολουθία Όριο Παράγωγος Ολοκλήρωμα Ολοκλήρωση Διαφορική Εξίσωση Πολυώνυμο Taylor Σειρά Εφαρμογές Λογισμού Single Variable Calculus Function Sequence Limit Derivative Integral Integration Differential Equation Taylor Polynomial Series Applications of Calculus Το σύγγραμμα προορίζεται για χρήση στη διδασκαλία της βασικής θεωρίας του Λογισμού συναρτήσεων μιας μεταβλητής. Απευθύνεται σε πρωτοετείς φοιτητές Ελληνικών Πανεπιστημίων, και λαμβάνει υπόψιν τις γνώσεις που έχουν αφομοιώσει στο Λύκειο και ιδιαιτέρως κατά την προετοιμασία τους για τις Πανελλήνιες Εξετάσεις. <br/><br/>Περιλαμβάνονται κεφάλαια με αντικείμενο τα αξιώματα των αριθμών, τα όρια, τη συνέχεια, την παράγωγο και τις εφαρμογές της, τον ορισμό του ολοκληρώματος και τις βασικές του ιδιότητες και εφαρμογές (σε υπολογισμούς όγκων, μηκών, κ.ο.κ.), τις διαφορικές εξισώσεις, τα πολυώνυμα Taylor, ακολουθίες, σειρές, και κάποια στοιχεία αναλυτικής γεωμετρίας (διανύσματα και κωνικές τομές). <br/><br/>Αν και το σύγγραμμα μπορεί σαφώς να χρησιμοποιηθεί σε τμήματα Μαθηματικών, Φυσικής και τμήματα Πολυτεχνικών Σχολών, εντούτοις, λόγω του μεγάλου εύρους της ύλης που καλύπτει, το βιβλίο είναι ιδανικό για διδασκαλία σε τμήματα τα οποία περιλαμβάνουν ένα σχετικά μικρό αριθμό μαθημάτων μαθηματικού υποβάθρου, και αφιερώνουν περίπου 1 μάθημα σε Λογισμό Μίας Μεταβλητής και συναφή θέματα. Υπάρχουν δεκάδες τέτοια τμήματα στην επικράτεια, π.χ. ΑΕΙ Πληροφορικής, Βιολογίας, Χημείας, Οικονομικής Επιστήμης, κ.ο.κ., καθώς και ΤΕΙ τεχνολογικής κατεύθυνσης. <br/><br/>Οι βασικοί στόχοι του βιβλίου είναι: <br/>* Οι φοιτητές να εμβαθύνουν στην ύλη που ήδη ξέρουν από το Λύκειο, δηλαδή τις βασικές έννοιες των παραγώγων και των ολοκληρωμάτων.<br/>* Οι φοιτητές να μάθουν ορισμένα νέα κομμάτια θεωρίας (π.χ. συνέχεια Lipschitz) και νέες εφαρμογές των ήδη γνωστών τους εννοιών (π.χ. υπολογισμοί διάφορων όγκων). <br/>* Οι φοιτητές να έρθουν σε επαφή με γνωστικά αντικειμενα όπως τα πολυώνυμα Taylor και διάφοροι αριθμητικές μέθοδοι (Μεθόδους Newton, Euler, κ.ο.κ.), τα οποία αποτελούν βασικά εργαλεία άλλων μαθημάτων στη συνέχεια των σπουδών τους. <br/>* Η ύλη να παρουσιάζεται κατά το δυνατόν αυστηρά ώστε να ενισχυθεί η ικανότητα των φοιτητών για δομημένη σκέψη. Ταυτόχρονα παρέχεται μεγάλο πλήθος ασκήσεων και παραδειγμάτων για καλύτερη κατανόηση. 2016-02-02T20:47:35Z 2021-07-09T21:26:15Z 2024-03-07T10:35:46Z 2016-02-02T20:47:35Z 2021-07-09T21:26:15Z 2024-03-07T10:35:46Z 2016-02-02 1 978-960-603-183-0 http://repository.kallipos.gr/handle/11419/2177 http://dx.doi.org/10.57713/kallipos-796 320178 el 1 350 application/pdf application/zip application/pdf |
institution |
Kallipos |
collection |
DSpace |
language |
Greek |
topic |
Λογισμός Συναρτήσεων μιας Μεταβλητής Συνάρτηση Ακολουθία Όριο Παράγωγος Ολοκλήρωμα Ολοκλήρωση Διαφορική Εξίσωση Πολυώνυμο Taylor Σειρά Εφαρμογές Λογισμού Single Variable Calculus Function Sequence Limit Derivative Integral Integration Differential Equation Taylor Polynomial Series Applications of Calculus |
spellingShingle |
Λογισμός Συναρτήσεων μιας Μεταβλητής Συνάρτηση Ακολουθία Όριο Παράγωγος Ολοκλήρωμα Ολοκλήρωση Διαφορική Εξίσωση Πολυώνυμο Taylor Σειρά Εφαρμογές Λογισμού Single Variable Calculus Function Sequence Limit Derivative Integral Integration Differential Equation Taylor Polynomial Series Applications of Calculus Τουμπής, Σταύρος Γκιτζένης, Σάββας Toumpis, Stavros Gitzenis, Savvas Λογισμός συναρτήσεων μιας μεταβλητής |
description |
Το σύγγραμμα προορίζεται για χρήση στη διδασκαλία της βασικής θεωρίας του Λογισμού συναρτήσεων μιας μεταβλητής. Απευθύνεται σε πρωτοετείς φοιτητές Ελληνικών Πανεπιστημίων, και λαμβάνει υπόψιν τις γνώσεις που έχουν αφομοιώσει στο Λύκειο και ιδιαιτέρως κατά την προετοιμασία τους για τις Πανελλήνιες Εξετάσεις. <br/><br/>Περιλαμβάνονται κεφάλαια με αντικείμενο τα αξιώματα των αριθμών, τα όρια, τη συνέχεια, την παράγωγο και τις εφαρμογές της, τον ορισμό του ολοκληρώματος και τις βασικές του ιδιότητες και εφαρμογές (σε υπολογισμούς όγκων, μηκών, κ.ο.κ.), τις διαφορικές εξισώσεις, τα πολυώνυμα Taylor, ακολουθίες, σειρές, και κάποια στοιχεία αναλυτικής γεωμετρίας (διανύσματα και κωνικές τομές). <br/><br/>Αν και το σύγγραμμα μπορεί σαφώς να χρησιμοποιηθεί σε τμήματα Μαθηματικών, Φυσικής και τμήματα Πολυτεχνικών Σχολών, εντούτοις, λόγω του μεγάλου εύρους της ύλης που καλύπτει, το βιβλίο είναι ιδανικό για διδασκαλία σε τμήματα τα οποία περιλαμβάνουν ένα σχετικά μικρό αριθμό μαθημάτων μαθηματικού υποβάθρου, και αφιερώνουν περίπου 1 μάθημα σε Λογισμό Μίας Μεταβλητής και συναφή θέματα. Υπάρχουν δεκάδες τέτοια τμήματα στην επικράτεια, π.χ. ΑΕΙ Πληροφορικής, Βιολογίας, Χημείας, Οικονομικής Επιστήμης, κ.ο.κ., καθώς και ΤΕΙ τεχνολογικής κατεύθυνσης. <br/><br/>Οι βασικοί στόχοι του βιβλίου είναι: <br/>* Οι φοιτητές να εμβαθύνουν στην ύλη που ήδη ξέρουν από το Λύκειο, δηλαδή τις βασικές έννοιες των παραγώγων και των ολοκληρωμάτων.<br/>* Οι φοιτητές να μάθουν ορισμένα νέα κομμάτια θεωρίας (π.χ. συνέχεια Lipschitz) και νέες εφαρμογές των ήδη γνωστών τους εννοιών (π.χ. υπολογισμοί διάφορων όγκων). <br/>* Οι φοιτητές να έρθουν σε επαφή με γνωστικά αντικειμενα όπως τα πολυώνυμα Taylor και διάφοροι αριθμητικές μέθοδοι (Μεθόδους Newton, Euler, κ.ο.κ.), τα οποία αποτελούν βασικά εργαλεία άλλων μαθημάτων στη συνέχεια των σπουδών τους. <br/>* Η ύλη να παρουσιάζεται κατά το δυνατόν αυστηρά ώστε να ενισχυθεί η ικανότητα των φοιτητών για δομημένη σκέψη. Ταυτόχρονα παρέχεται μεγάλο πλήθος ασκήσεων και παραδειγμάτων για καλύτερη κατανόηση. |
format |
1 |
author |
Τουμπής, Σταύρος Γκιτζένης, Σάββας Toumpis, Stavros Gitzenis, Savvas |
author_facet |
Τουμπής, Σταύρος Γκιτζένης, Σάββας Toumpis, Stavros Gitzenis, Savvas |
author_sort |
Τουμπής, Σταύρος |
title |
Λογισμός συναρτήσεων μιας μεταβλητής |
title_short |
Λογισμός συναρτήσεων μιας μεταβλητής |
title_full |
Λογισμός συναρτήσεων μιας μεταβλητής |
title_fullStr |
Λογισμός συναρτήσεων μιας μεταβλητής |
title_full_unstemmed |
Λογισμός συναρτήσεων μιας μεταβλητής |
title_sort |
λογισμός συναρτήσεων μιας μεταβλητής |
publishDate |
2016 |
url |
http://repository.kallipos.gr/handle/11419/2177 http://dx.doi.org/10.57713/kallipos-796 |
work_keys_str_mv |
AT toumpēsstauros logismossynartēseōnmiasmetablētēs AT nkitzenēssabbas logismossynartēseōnmiasmetablētēs AT toumpisstavros logismossynartēseōnmiasmetablētēs AT gitzenissavvas logismossynartēseōnmiasmetablētēs AT toumpēsstauros eisagōgēstonlogismosynartēseōnmiasmetablētēsgiaprōtoeteisphoitētes AT nkitzenēssabbas eisagōgēstonlogismosynartēseōnmiasmetablētēsgiaprōtoeteisphoitētes AT toumpisstavros eisagōgēstonlogismosynartēseōnmiasmetablētēsgiaprōtoeteisphoitētes AT gitzenissavvas eisagōgēstonlogismosynartēseōnmiasmetablētēsgiaprōtoeteisphoitētes |
_version_ |
1799946649375604737 |