Περίληψη: | Το εισαγωγικό αυτό κεφάλαιο εξυπηρετεί δύο αλληλοκαλυπτόμενους σκοπούς. Πρώτον, θυμίζει στον αναγνώστη πολλές από τις γνώσεις που είναι προαπαιτούμενες σε ένα μάθημα Λογισμού συναρτήσεων μίας μεταβλητής, ιδιαιτέρως παρουσιάζοντας το συμβολισμό και τους ορισμούς που θα χρησιμοποιηθούν στη συνέχεια. Επειδή η ύλη είναι γνωστή από το Λύκειο, θα είμαστε αρκετά περιληπτικοί. Δεύτερον, αποτελεί σύντομη εισαγωγή στην αξιωματική θεμελίωση των πραγματικών αριθμών. Σε αντίθεση με τη συνήθη λυκειακή προσέγγιση, ξεκινάμε από ένα ελάχιστο πλήθος ιδιοτήτων που αποδεχόμαστε αξιωματικά, και κατόπιν δείχνουμε πώς μπορούμε να αποδείξουμε, βάσει αυτών, το σύνολο των γνωστών ιδιοτήτων των πραγματικών αριθμών. Ιδιαιτέρως, εισάγουμε την έννοια του supremum, που είναι απαραίτητη σε πολλά κρίσιμα σημεία της ανάπτυξης της θεωρίας, όπως, για παράδειγμα, στην απόδειξη του Θεωρήματος του Bolzano και στον ορισμό του ολοκληρώματος.
|