Αλγόριθμος του Kruskal
Kruskal's algorithm is a minimum-spanning-tree algorithm which finds a minimum spanning tree for a connected weighted graph adding increasing cost arcs at each step. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edge...
Κύριοι συγγραφείς: | , , , , , |
---|---|
Μορφή: | 110 |
Γλώσσα: | Greek |
Έκδοση: |
2015
|
Θέματα: | |
Διαθέσιμο Online: | http://localhost:8080/jspui/handle/11419/450 |
id |
kallipos-11419-450 |
---|---|
record_format |
dspace |
spelling |
kallipos-11419-4502021-07-09T14:59:18Z Αλγόριθμος του Kruskal Kruskal's algorithm Εφαρμογή του Αλγόριθμου Application of Algorithm Georgiou, Dimitrios Antoniou, Efstathios Chatzimichailidis, Anestis Γεωργίου, Δημήτριος Αντωνίου, Ευστάθιος Χατζημιχαηλίδης, Ανέστης ΓΡΑΦΟΙ Graphs Kruskal's algorithm is a minimum-spanning-tree algorithm which finds a minimum spanning tree for a connected weighted graph adding increasing cost arcs at each step. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.<br/><br/>1. create a forest F (a set of trees), where each vertex in the graph is a separate tree<br/>2. create a set S containing all the edges in the graph<br/>3. while S is nonempty and F is not yet spanning remove an edge with minimum weight from S<br/>4. if the removed edge connects two different trees then add it to the forest F, combining two trees into a single tree<br/><br/>At the termination of the algorithm, the forest forms a minimum spanning forest of the graph. If the graph is connected, the forest has a single component and forms a minimum spanning tree. Aν οι ακμές ενός Γράφου έχουν εφοδιαστεί με τιμές που είναι είτε μήκος είτε κόστος, τότε μπορούμε να βρούμε το συντομότερο, ή το φθηνότερο δέντρο σύνδεσης. Ο αλγόριθμος του Kruskal λύνει αυτό το πρόβλημα. Η ιδέα είναι σχετικά απλή. Πρώτα σβήνουμε όλες τις ακμές και αφήνουμε μόνο τις n κορυφές. Στη συνέχεια επανατοποθετούμε τις ακμές τη μια μετά την άλλη, κατά αυξουσα τάξη βάρους, αλλά προσέχουμε να αγνοήσουμε κάθε ακμή που θα συμπλήρωνε ένα κύκλωμα. Η διαδικασία τελειώνει με την τοποθέτηση της n-1 ακμής. 2015-12-21T10:01:48Z 2021-07-09T14:59:18Z 2015-12-21T10:01:48Z 2021-07-09T14:59:18Z 2015-12-21 110 http://localhost:8080/jspui/handle/11419/450 el 1 text/html |
institution |
Kallipos |
collection |
DSpace |
language |
Greek |
topic |
ΓΡΑΦΟΙ Graphs |
spellingShingle |
ΓΡΑΦΟΙ Graphs Georgiou, Dimitrios Antoniou, Efstathios Chatzimichailidis, Anestis Γεωργίου, Δημήτριος Αντωνίου, Ευστάθιος Χατζημιχαηλίδης, Ανέστης Αλγόριθμος του Kruskal |
description |
Kruskal's algorithm is a minimum-spanning-tree algorithm which finds a minimum spanning tree for a connected weighted graph adding increasing cost arcs at each step. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.<br/><br/>1. create a forest F (a set of trees), where each vertex in the graph is a separate tree<br/>2. create a set S containing all the edges in the graph<br/>3. while S is nonempty and F is not yet spanning remove an edge with minimum weight from S<br/>4. if the removed edge connects two different trees then add it to the forest F, combining two trees into a single tree<br/><br/>At the termination of the algorithm, the forest forms a minimum spanning forest of the graph. If the graph is connected, the forest has a single component and forms a minimum spanning tree. |
format |
110 |
author |
Georgiou, Dimitrios Antoniou, Efstathios Chatzimichailidis, Anestis Γεωργίου, Δημήτριος Αντωνίου, Ευστάθιος Χατζημιχαηλίδης, Ανέστης |
author_facet |
Georgiou, Dimitrios Antoniou, Efstathios Chatzimichailidis, Anestis Γεωργίου, Δημήτριος Αντωνίου, Ευστάθιος Χατζημιχαηλίδης, Ανέστης |
author_sort |
Georgiou, Dimitrios |
title |
Αλγόριθμος του Kruskal |
title_short |
Αλγόριθμος του Kruskal |
title_full |
Αλγόριθμος του Kruskal |
title_fullStr |
Αλγόριθμος του Kruskal |
title_full_unstemmed |
Αλγόριθμος του Kruskal |
title_sort |
αλγόριθμος του kruskal |
publishDate |
2015 |
url |
http://localhost:8080/jspui/handle/11419/450 |
work_keys_str_mv |
AT georgioudimitrios algorithmostoukruskal AT antoniouefstathios algorithmostoukruskal AT chatzimichailidisanestis algorithmostoukruskal AT geōrgioudēmētrios algorithmostoukruskal AT antōnioueustathios algorithmostoukruskal AT chatzēmichaēlidēsanestēs algorithmostoukruskal AT georgioudimitrios kruskalsalgorithm AT antoniouefstathios kruskalsalgorithm AT chatzimichailidisanestis kruskalsalgorithm AT geōrgioudēmētrios kruskalsalgorithm AT antōnioueustathios kruskalsalgorithm AT chatzēmichaēlidēsanestēs kruskalsalgorithm AT georgioudimitrios epharmogētoualgorithmou AT antoniouefstathios epharmogētoualgorithmou AT chatzimichailidisanestis epharmogētoualgorithmou AT geōrgioudēmētrios epharmogētoualgorithmou AT antōnioueustathios epharmogētoualgorithmou AT chatzēmichaēlidēsanestēs epharmogētoualgorithmou AT georgioudimitrios applicationofalgorithm AT antoniouefstathios applicationofalgorithm AT chatzimichailidisanestis applicationofalgorithm AT geōrgioudēmētrios applicationofalgorithm AT antōnioueustathios applicationofalgorithm AT chatzēmichaēlidēsanestēs applicationofalgorithm |
_version_ |
1771301333959180288 |