Θεωρία Συνόλων
In the first chapter a limited reference is made to the classical concept of the set as well as to algebra of the sets. The examples serve the following learning objectives: understanding importance of sets in the formation and management of data structures, categorizations and classifications of th...
Κύριοι συγγραφείς: | , , , , , |
---|---|
Μορφή: | 7 |
Γλώσσα: | Greek |
Έκδοση: |
2015
|
Θέματα: | |
Διαθέσιμο Online: | http://localhost:8080/jspui/handle/11419/458 |
id |
kallipos-11419-458 |
---|---|
record_format |
dspace |
spelling |
kallipos-11419-4582024-05-14T09:42:53Z Θεωρία Συνόλων Set Theory Γεωργίου, Δημήτριος Αντωνίου, Ευστάθιος Χατζημιχαηλίδης, Ανέστης Georgiou, Dimitrios Antoniou, Efstathios Chatzimichailidis, Anestis Επεκτασιμότητα Κενά σύνολα και σύζευξη Διαχωρισιμότητα Σύνολα ισχύος Ένωση συνόλων Αξίωμα επιλογής Καρτεσιανό προϊόν Λειτουργίες Άλγεβρα συνόλων Ασαφή σύνολα Συναρτήσεις μέλους Ασαφής Extendability Empty Sets and Pairing Separability Power sets Union of Sets Axiom of Choice Cartesian Product Operations Algebra of Sets Fuzzy Sets Membership Functions Fuzziness In the first chapter a limited reference is made to the classical concept of the set as well as to algebra of the sets. The examples serve the following learning objectives: understanding importance of sets in the formation and management of data structures, categorizations and classifications of these elements, the formation of logic and pattern recognition. In the first paragraph, the evolution of the theory from Cantor to modern fuzzy set theory is briefly outlined. The detection of paradoxes played a special role in this development and the questioning of the positions originally formulated. The second, third and fourth paragraphs present the basic principles of set algebra in their classical sense. Basic relations of sets are mentioned in the fifth paragraph, while the last two paragraphs refer to fuzzy sets and the topology of fuzzy sets. Measure methods are introduced mainly with the embership functions and examples of sets of elements that are characterized by their qualitative characteristics are presented focusing on the establishment of appropriate membership function that specifies the degree of participation of the elements in the fuzzy set. More than its use as a fundamental system, set theory is a discipline of mathematics attractive to the research community. Modern research in set theory includes a diverse collection of topics, ranging from the structure of the real number line to study of the consequence for large integers. Στο πρώτο κεφάλαιο γίνεται αναφορά στην κλασσική έννοια του συνόλου, και στην άλγεβρα των συνόλων. Στη συνέχεια γίνεται αναφορά στα ασαφή σύνολα και την τοπολογία των ασαφών συνόλων. Αναπτύσσονται οι μέθοδοι εισαγωγής μέτρου με τις συναρτήσεις συμμετοχής και παρουσιάζονται παραδείγματα συνόλων με στοιχεία, που διακρίνονται λόγω των ποιοτικών χαρακτηριστικών τους και ο τρόπος, που η συνάρτηση συμμετοχής καθορίζει τον βαθμό συμμετοχής των στοιχείων στο ασαφές σύνολο. <br/>Τα παραδείγματα και οι διαδραστικές εφαρμογές εξυπηρετούν τον μαθησιακό στόχο, της κατανόησης της σημασίας των συνόλων στην διαμόρφωση και τη διαχείριση δομών δεδομένων, τις κατηγοριοποιήσεις, τις ταξινομήσεις των στοιχείων αυτών, τη διαμόρφωση της λογικής και την αναγνώριση προτύπων. 2015-12-21T10:01:55Z 2021-07-09T14:59:00Z 2015-12-21T10:01:55Z 2021-07-09T14:59:00Z 2015-12-21 7 http://localhost:8080/jspui/handle/11419/458 el 1 29 application/pdf |
institution |
Kallipos |
collection |
DSpace |
language |
Greek |
topic |
Επεκτασιμότητα Κενά σύνολα και σύζευξη Διαχωρισιμότητα Σύνολα ισχύος Ένωση συνόλων Αξίωμα επιλογής Καρτεσιανό προϊόν Λειτουργίες Άλγεβρα συνόλων Ασαφή σύνολα Συναρτήσεις μέλους Ασαφής Extendability Empty Sets and Pairing Separability Power sets Union of Sets Axiom of Choice Cartesian Product Operations Algebra of Sets Fuzzy Sets Membership Functions Fuzziness |
spellingShingle |
Επεκτασιμότητα Κενά σύνολα και σύζευξη Διαχωρισιμότητα Σύνολα ισχύος Ένωση συνόλων Αξίωμα επιλογής Καρτεσιανό προϊόν Λειτουργίες Άλγεβρα συνόλων Ασαφή σύνολα Συναρτήσεις μέλους Ασαφής Extendability Empty Sets and Pairing Separability Power sets Union of Sets Axiom of Choice Cartesian Product Operations Algebra of Sets Fuzzy Sets Membership Functions Fuzziness Γεωργίου, Δημήτριος Αντωνίου, Ευστάθιος Χατζημιχαηλίδης, Ανέστης Georgiou, Dimitrios Antoniou, Efstathios Chatzimichailidis, Anestis Θεωρία Συνόλων |
description |
In the first chapter a limited reference is made to the classical concept of the set as well as to algebra of the sets. The examples serve the following learning objectives: understanding importance of sets in the formation and management of data structures, categorizations and classifications of these elements, the formation of logic and pattern recognition. In the first paragraph, the evolution of the theory from Cantor to modern fuzzy set theory is briefly outlined. The detection of paradoxes played a special role in this development and the questioning of the positions originally formulated. The second, third and fourth paragraphs present the basic principles of set algebra in their classical sense. Basic relations of sets are mentioned in the fifth paragraph, while the last two paragraphs refer to fuzzy sets and the topology of fuzzy sets. Measure methods are introduced mainly with the embership functions and examples of sets of elements that are characterized by their qualitative characteristics are presented focusing on the establishment of appropriate membership function that specifies the degree of participation of the elements in the fuzzy set. More than its use as a fundamental system, set theory is a discipline of mathematics attractive to the research community. Modern research in set theory includes a diverse collection of topics, ranging from the structure of the real number line to study of the consequence for large integers. |
format |
7 |
author |
Γεωργίου, Δημήτριος Αντωνίου, Ευστάθιος Χατζημιχαηλίδης, Ανέστης Georgiou, Dimitrios Antoniou, Efstathios Chatzimichailidis, Anestis |
author_facet |
Γεωργίου, Δημήτριος Αντωνίου, Ευστάθιος Χατζημιχαηλίδης, Ανέστης Georgiou, Dimitrios Antoniou, Efstathios Chatzimichailidis, Anestis |
author_sort |
Γεωργίου, Δημήτριος |
title |
Θεωρία Συνόλων |
title_short |
Θεωρία Συνόλων |
title_full |
Θεωρία Συνόλων |
title_fullStr |
Θεωρία Συνόλων |
title_full_unstemmed |
Θεωρία Συνόλων |
title_sort |
θεωρία συνόλων |
publishDate |
2015 |
url |
http://localhost:8080/jspui/handle/11419/458 |
work_keys_str_mv |
AT geōrgioudēmētrios theōriasynolōn AT antōnioueustathios theōriasynolōn AT chatzēmichaēlidēsanestēs theōriasynolōn AT georgioudimitrios theōriasynolōn AT antoniouefstathios theōriasynolōn AT chatzimichailidisanestis theōriasynolōn AT geōrgioudēmētrios settheory AT antōnioueustathios settheory AT chatzēmichaēlidēsanestēs settheory AT georgioudimitrios settheory AT antoniouefstathios settheory AT chatzimichailidisanestis settheory |
_version_ |
1799946654957174784 |