Time domain spectral finite element methods for the simulation of wave propagation in composite layered structures with active piezoelectric sensors

The aim of the current dissertation is the development of novel laminate mechanics and finite element methods capable of predicting the guided wave propagation in laminated composite strips and plates, excited by physically modeled piezoelectric actuators. The present thesis is subdivided into three...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ρεκατσίνας, Χριστόφορος
Άλλοι συγγραφείς: Σαραβάνος, Δημήτριος
Μορφή: Thesis
Γλώσσα:English
Έκδοση: 2017
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/10249
id nemertes-10889-10249
record_format dspace
institution UPatras
collection Nemertes
language English
topic Layerwise mechanics
Piezoelectric actuators and sensors
Explicit time integration
Time domain spectral finite elements
Guided waves
Composite and sandwich laminates
Θεωρία διακριτών στρωμάτων
Ενεργοί πιεζοηλεκτρικοί αισθητήρες
Άμεση μέθοδος ολοκλήρωσης
Χρονικά φασματικά πεπερασμένα στοιχεία
Καθοδηγούμενα κύματα
Σύνθετες διαστρωματώσεις
624.177 65
spellingShingle Layerwise mechanics
Piezoelectric actuators and sensors
Explicit time integration
Time domain spectral finite elements
Guided waves
Composite and sandwich laminates
Θεωρία διακριτών στρωμάτων
Ενεργοί πιεζοηλεκτρικοί αισθητήρες
Άμεση μέθοδος ολοκλήρωσης
Χρονικά φασματικά πεπερασμένα στοιχεία
Καθοδηγούμενα κύματα
Σύνθετες διαστρωματώσεις
624.177 65
Ρεκατσίνας, Χριστόφορος
Time domain spectral finite element methods for the simulation of wave propagation in composite layered structures with active piezoelectric sensors
description The aim of the current dissertation is the development of novel laminate mechanics and finite element methods capable of predicting the guided wave propagation in laminated composite strips and plates, excited by physically modeled piezoelectric actuators. The present thesis is subdivided into three main parts; the first one addresses the development of high order and layerwise laminate theories which can effectively model the propagation of guided waves in laminated or/and sandwich composite strips and plates; the second part describes the formulation of novel time domain spectral finite elements, while the third part describes the adopted experimental procedures and the laboratory tests that were performed in order to validate the developed time domain spectral finite element models. The developed laminate mechanics theories presented in the first part, were inspired by the Rayleigh-Lamb wave solution, which assumes the axial and the transverse displacements as a summation of sines and cosines. Consequently, high-order approximations and additional degrees of freedom were considered in the kinematic assumptions of both axial and transverse displacements, enabling the prediction of symmetric and anti-symmetric type guided waves. Thereafter, while proving that polynomials up to the third degree were adequate for the simulation of fundamental and modes, a new high order laminate theory was proposed using for the through thickness interpolation functions third order cubic Hermite splines. The newly developed theory for strips and plates, further facilitates the approximation of the displacements and their respective rotations at the interfaces of the strip or the plate. In addition, enables the efficient layerwise expansion for multiple applications, such as the modeling of thick sandwich laminates, the prediction of higher order guided wave modes and the physical representation of piezoelectric actuators and sensors. The second part describes the combination of the aforementioned laminate theories into a time domain spectral finite element formulation. The time domain spectral finite elements have as a basis the high order polynomial Lagrange shape functions which ensure efficient spatial approximation of very small wavelengths in the length of the strip or in the plane of the plate. More importantly, the integration points are collocated with the element’s nodes using the Gauss-Lobbato-Legendre quadrature, which gives rise to multi-node strip and plate elements with diagonal consistent mass matrices. Thus, a substantial boost of the computational speed of a central-difference explicit time integration scheme is presented while at the same time, improved accuracy compared to the explicit finite element using lumped mass matrices is observed. At the third part, the TFSDEs were evaluated and validated against well-established semi-analytical methods, commercial FE algorithms and experimental results. The outcome of the evaluation proved that the numerical tool developed within the framework of the present thesis improves the already stated works at the scientific sector of wave propagation in composite laminates. Improvements were observed both in the prediction accuracy and the required analysis time. Finally, a layerwise explicit integration scheme was presented for the coupled electromechanical system.
author2 Σαραβάνος, Δημήτριος
author_facet Σαραβάνος, Δημήτριος
Ρεκατσίνας, Χριστόφορος
format Thesis
author Ρεκατσίνας, Χριστόφορος
author_sort Ρεκατσίνας, Χριστόφορος
title Time domain spectral finite element methods for the simulation of wave propagation in composite layered structures with active piezoelectric sensors
title_short Time domain spectral finite element methods for the simulation of wave propagation in composite layered structures with active piezoelectric sensors
title_full Time domain spectral finite element methods for the simulation of wave propagation in composite layered structures with active piezoelectric sensors
title_fullStr Time domain spectral finite element methods for the simulation of wave propagation in composite layered structures with active piezoelectric sensors
title_full_unstemmed Time domain spectral finite element methods for the simulation of wave propagation in composite layered structures with active piezoelectric sensors
title_sort time domain spectral finite element methods for the simulation of wave propagation in composite layered structures with active piezoelectric sensors
publishDate 2017
url http://hdl.handle.net/10889/10249
work_keys_str_mv AT rekatsinaschristophoros timedomainspectralfiniteelementmethodsforthesimulationofwavepropagationincompositelayeredstructureswithactivepiezoelectricsensors
AT rekatsinaschristophoros methodoiphasmatikōnpeperasmenōnstoicheiōnstopediotouchronougiatēnanalysēkymatikēsdiadosēssesynthetespolystrōtesplakesmeenergouspiezoēlektrikousaisthētēres
_version_ 1771297329724260352
spelling nemertes-10889-102492022-09-05T20:26:34Z Time domain spectral finite element methods for the simulation of wave propagation in composite layered structures with active piezoelectric sensors Μέθοδοι φασματικών πεπερασμένων στοιχείων στο πεδίο του χρόνου για την ανάλυση κυματικής διάδοσης σε σύνθετες πολύστρωτες πλάκες με ενεργούς πιεζοηλεκτρικούς αισθητήρες Ρεκατσίνας, Χριστόφορος Σαραβάνος, Δημήτριος Σαραβάνος, Δημήτριος Πολύζος, Δημοσθένης Σούτης, Κωνσταντίνος Καράμπαλης, Δημήτριος Φιλιππίδης, Θεόδωρος Λούτας, Θεόδωρος Σακελαρίου, Ιωάννης Rekatsinas, Christoforos Layerwise mechanics Piezoelectric actuators and sensors Explicit time integration Time domain spectral finite elements Guided waves Composite and sandwich laminates Θεωρία διακριτών στρωμάτων Ενεργοί πιεζοηλεκτρικοί αισθητήρες Άμεση μέθοδος ολοκλήρωσης Χρονικά φασματικά πεπερασμένα στοιχεία Καθοδηγούμενα κύματα Σύνθετες διαστρωματώσεις 624.177 65 The aim of the current dissertation is the development of novel laminate mechanics and finite element methods capable of predicting the guided wave propagation in laminated composite strips and plates, excited by physically modeled piezoelectric actuators. The present thesis is subdivided into three main parts; the first one addresses the development of high order and layerwise laminate theories which can effectively model the propagation of guided waves in laminated or/and sandwich composite strips and plates; the second part describes the formulation of novel time domain spectral finite elements, while the third part describes the adopted experimental procedures and the laboratory tests that were performed in order to validate the developed time domain spectral finite element models. The developed laminate mechanics theories presented in the first part, were inspired by the Rayleigh-Lamb wave solution, which assumes the axial and the transverse displacements as a summation of sines and cosines. Consequently, high-order approximations and additional degrees of freedom were considered in the kinematic assumptions of both axial and transverse displacements, enabling the prediction of symmetric and anti-symmetric type guided waves. Thereafter, while proving that polynomials up to the third degree were adequate for the simulation of fundamental and modes, a new high order laminate theory was proposed using for the through thickness interpolation functions third order cubic Hermite splines. The newly developed theory for strips and plates, further facilitates the approximation of the displacements and their respective rotations at the interfaces of the strip or the plate. In addition, enables the efficient layerwise expansion for multiple applications, such as the modeling of thick sandwich laminates, the prediction of higher order guided wave modes and the physical representation of piezoelectric actuators and sensors. The second part describes the combination of the aforementioned laminate theories into a time domain spectral finite element formulation. The time domain spectral finite elements have as a basis the high order polynomial Lagrange shape functions which ensure efficient spatial approximation of very small wavelengths in the length of the strip or in the plane of the plate. More importantly, the integration points are collocated with the element’s nodes using the Gauss-Lobbato-Legendre quadrature, which gives rise to multi-node strip and plate elements with diagonal consistent mass matrices. Thus, a substantial boost of the computational speed of a central-difference explicit time integration scheme is presented while at the same time, improved accuracy compared to the explicit finite element using lumped mass matrices is observed. At the third part, the TFSDEs were evaluated and validated against well-established semi-analytical methods, commercial FE algorithms and experimental results. The outcome of the evaluation proved that the numerical tool developed within the framework of the present thesis improves the already stated works at the scientific sector of wave propagation in composite laminates. Improvements were observed both in the prediction accuracy and the required analysis time. Finally, a layerwise explicit integration scheme was presented for the coupled electromechanical system. Ο σκοπός της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη καινοτόμων θεωριών διάτμησης για την ανάλυση διαστρωματώσεων από σύνθετα υλικά, καθώς και μεθόδων πεπερασμένων στοιχείων ικανών να προβλέπουν την κυματική διάδοση στο εσωτερικό δοκών και πλακών από σύνθετα υλικά, η διέγερση των οποίων έχει προέλθει από την φυσική παρουσία ενεργών πιεζοηλεκτρικών αισθητηρίων. Η παρούσα διατριβή μπορεί να υποκατηγοριοποιηθεί σε τρεις επιμέρους τομείς. Ο πρώτος από τους οποίους έχει ως θέμα την ανάπτυξη θεωριών ανώτερης τάξης, μέσω των οποίων μπορεί να προσομοιωθεί επιτυχώς η κυματική διάδοση σε πλάκες κατασκευασμένες από σύνθετα υλικά, όπως επίσης σε πλάκες με έντονα ανομοιογενής στρώσεις τύπου “sandwich”. Το δεύτερο κομμάτι της διατριβής παρουσιάζει τη μεθοδολογία για την ανάπτυξη φασματικών πεπερασμένων στοιχείων στο πεδίο του χρόνου, ενώ το τρίτο και τελευταίο κομμάτι ασχολείται με τα πειράματα που πραγματοποιήθηκαν καθ’ όλην τη διάρκεια της διδακτορικής διατριβής, με απώτερο σκοπό την επιβεβαίωση των καινοτόμων στοιχείων της διατριβής μέσω της ταυτοποίησης των αποτελεσμάτων. Οι κινηματικές υποθέσεις που αναπτύχθηκαν με σκοπό την προσομοίωση της κυματικής διάδοσης σε σύνθετες κατασκευές, εμπνεύστηκαν από τη λύση της εξίσωσης διάδοσης κύματος των Rayleigh-Lamb, οποία προϋποθέτει ότι οι μετατοπίσεις ισούνται με το άθροισμα ημιτόνων και συνημίτονων. Στη συνέχεια με τη βοήθεια του αναπτύγματος Taylor εισήχθησαν μη-γραμμικοί όροι στην αξονική και εγκάρσια μετατόπιση, μια καινοτομία που ευνοεί την έγκυρη πρόβλεψη των συμμετρικών και αντισυμμετρικών τύπου κυμάτων. Στη συνέχεια αφού οι όροι τρίτης τάξης αποδείχθηκαν αρκετοί για την πρόβλεψη της κυματικής διάδοσης σε πλάκες και δοκούς από σύνθετα υλικά, προτάθηκε μια καινούργια θεωρία ανώτερης τάξης, στην οποία χρησιμοποιούνται ως συναρτήσεις ενδοπαρεμβολής Ερμιτιανά πολυώνυμα τρίτης τάξης. Η συγκεκριμένη θεωρία προϋποθέτει ως βαθμούς ελευθερίας τις μετατοπίσεις και αντίστοιχες περιστροφές τους, των πάνω και κάτω διακριτών επιφανειών της σύνθετης στρώσης. Μια μοναδική ιδιότητα η οποία επιτρέπει την επέκταση από θεωρία μονής στρώσης σε θεωρία διακριτών στρωμάτων, δίνοντας τη δυνατότητα προσομοίωσης πολύπλοκων διαστρωματώσεων, καθώς και την ένωση τομέων της κατασκευής με διαφορετικό αριθμό διακριτών στρωμάτων. Ένα χαρακτηριστικό παράδειγμα είναι η παρουσία ενός πιεζοηλεκτρικού διεγέρτη περιορισμένο σε μια διακριτή επιφάνεια της κατασκευής, κατά συνέπεια με δεύτερη διακριτή στρώση πρέπει να εισαχθεί μόνο σε αυτή τη διακριτή επιφάνεια. Στο δεύτερο μέρος της παρούσας διατριβής παρουσιάζεται η ενοποίηση των προαναφερθέντων θεριών με την ανάπτυξη φασματικών πεπερασμένων στοιχείων στο πεδίο του χρόνου. Τα χρονικά φασματικά πεπερασμένα στοιχεία έχουν ως βάση πολυωνυμικές συναρτήσεις μορφής ανώτερης τάξης τύπου Lagrange. Η ανώτερη τάξη των συναρτήσεων μορφής επιτρέπει τη δημιουργία πολύκομβων φασματικών πεπερασμένων στοιχείων, δίνοντας την ευχέρεια προσομοίωσης υψίσυχνων σημάτων με πολύ μικρό μήκος κύματος με τη χρήση πολύ λίγων φασματικών πεπερασμένων στοιχείων. Επιπλέον οι κόμβοι των φασματικών πεπερασμένων στοιχείων συμπίπτουν με τα σημεία ολοκλήρωσης των Gauss-Lobbato-Legendre, βοηθώντας στη σύνθεση συνεπών διαγώνιων μητρώων μάζας, επιτρέποντας την γρήγορη λύση του ηλεκτρομηχανικού συστήματος με τη μέθοδο κεντρικών διαφορών άμεσης ολοκλήρωσης. Τελειώνοντας, το τρίτο επιμέρους κομμάτι της διατριβής ασχολείται με τα δοκίμια πολύστρωτων δοκών και πλακών (από ίνες άνθρακα σε εποξειδική ρητίνη) που κατασκευάστηκαν στη παρούσα διατριβή, και με τα πειράματα που διεξήχθησαν σε αυτά με σκοπό την πειραματική επαλήθευση και πιστοποίηση των αριθμητικών αποτελεσμάτων. 2017-05-12T16:01:19Z 2017-05-12T16:01:19Z 2016-09-26 Thesis http://hdl.handle.net/10889/10249 en_US Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 6 application/pdf