Application of Mathematica to the Rayleigh–Ritz method for plane elasticity problems
The classical Rayleigh–Ritz method for plane isotropic elasticity problems governed by the well-known biharmonic equation (satisfied by the Airy stress function) is revisited. The modern and powerful computer algebra system Mathematica was employed for the symbolic/numerical approximate solution of...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Technical Report |
Γλώσσα: | English |
Έκδοση: |
2018
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10889/10916 |
Περίληψη: | The classical Rayleigh–Ritz method for plane isotropic elasticity problems governed by the well-known biharmonic equation (satisfied by the Airy stress function) is revisited. The modern and powerful computer algebra system Mathematica was employed for the symbolic/numerical approximate solution of the biharmonic equation. A related simple procedure was prepared and the classical problem of a rectangular elastic region loaded by a parabolic tensile loading was chosen as an example of the application of the approach. The available symbolic/numerical results in the literature and additional more complicated analogous results were directly derived by using the aforementioned procedure. Further related possibilities and generalizations are also discussed in brief. |
---|