Problems of convergence of the direct methods of numerical solution of singular integral equations with Cauchy-type kernels
In this technical report, general directions are given for the proof of the convergence of four direct methods of numerical solution of real Cauchy-type singular integral equations on a finite open interval. The methods under consideration are (i) the Galerkin method, (ii) the collocation method, (i...
Κύριος συγγραφέας: | Ioakimidis, Nikolaos |
---|---|
Άλλοι συγγραφείς: | Ιωακειμίδης, Νικόλαος |
Μορφή: | Technical Report |
Γλώσσα: | English |
Έκδοση: |
2018
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10889/10989 |
Παρόμοια τεκμήρια
-
Methods of numerical solution of singular integral equations with Cauchy-type kernels
ανά: Ioakimidis, Nikolaos
Έκδοση: (2018) -
Numerical comparison of two regularization methods for singular integral equations
ανά: Ioakimidis, Nikolaos
Έκδοση: (2018) -
A modification of the generalized airfoil equation and the corresponding numerical methods
ανά: Ioakimidis, Nikolaos
Έκδοση: (2018) -
A new semi-Gaussian quadrature rule for finite-part integrals in crack problems with a second-order singularity
ανά: Ioakimidis, Nikolaos
Έκδοση: (2018) -
A new quadrature method for locating the zeros of analytic functions with applications to engineering problems
ανά: Ioakimidis, Nikolaos
Έκδοση: (2018)