Detecting solar chameleons through radiation pressure

Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bauma, Sebastian, Cantatorec, Giovanni, Hoffmanne, Dieter H.H., Karuzad, Marin, Semertzidis, Yannis, Upadhyei, Aniruddha, Zioutas, Konstantinos
Άλλοι συγγραφείς: Ζιούτας, Κωνσταντίνος
Μορφή: Journal (paper)
Γλώσσα:English
Έκδοση: 2018
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/11467
id nemertes-10889-11467
record_format dspace
spelling nemertes-10889-114672022-09-05T14:01:43Z Detecting solar chameleons through radiation pressure Bauma, Sebastian Cantatorec, Giovanni Hoffmanne, Dieter H.H. Karuzad, Marin Semertzidis, Yannis Upadhyei, Aniruddha Zioutas, Konstantinos Ζιούτας, Κωνσταντίνος Σεμερτζίδης, Γιάννης Light scalar fields General relativity Chameleon mechanism INFN Trieste Βαθμωτά πεδία Γενική σχετικότητα Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space. 2018-07-24T08:00:08Z 2018-07-24T08:00:08Z 2014-10 Journal (paper) Bauma, S., Cantatorec, G., Hoffmanne, D., Karuzad, M., Semertzidisg, Y., Upadhyei, A., & Zioutas, K. (2014). "Detecting solar chameleons through radiation pressure". Science Direct, Physics Letters B, 739, 167-173. doi:https://doi.org/10.1016/j.physletb.2014.10.055. 10.1016/j.physletb.2014.10.055 http://hdl.handle.net/10889/11467 en application/pdf Science Direct, Physics Letters B
institution UPatras
collection Nemertes
language English
topic Light scalar fields
General relativity
Chameleon mechanism
INFN Trieste
Βαθμωτά πεδία
Γενική σχετικότητα
spellingShingle Light scalar fields
General relativity
Chameleon mechanism
INFN Trieste
Βαθμωτά πεδία
Γενική σχετικότητα
Bauma, Sebastian
Cantatorec, Giovanni
Hoffmanne, Dieter H.H.
Karuzad, Marin
Semertzidis, Yannis
Upadhyei, Aniruddha
Zioutas, Konstantinos
Detecting solar chameleons through radiation pressure
description Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.
author2 Ζιούτας, Κωνσταντίνος
author_facet Ζιούτας, Κωνσταντίνος
Bauma, Sebastian
Cantatorec, Giovanni
Hoffmanne, Dieter H.H.
Karuzad, Marin
Semertzidis, Yannis
Upadhyei, Aniruddha
Zioutas, Konstantinos
format Journal (paper)
author Bauma, Sebastian
Cantatorec, Giovanni
Hoffmanne, Dieter H.H.
Karuzad, Marin
Semertzidis, Yannis
Upadhyei, Aniruddha
Zioutas, Konstantinos
author_sort Bauma, Sebastian
title Detecting solar chameleons through radiation pressure
title_short Detecting solar chameleons through radiation pressure
title_full Detecting solar chameleons through radiation pressure
title_fullStr Detecting solar chameleons through radiation pressure
title_full_unstemmed Detecting solar chameleons through radiation pressure
title_sort detecting solar chameleons through radiation pressure
publishDate 2018
url http://hdl.handle.net/10889/11467
work_keys_str_mv AT baumasebastian detectingsolarchameleonsthroughradiationpressure
AT cantatorecgiovanni detectingsolarchameleonsthroughradiationpressure
AT hoffmannedieterhh detectingsolarchameleonsthroughradiationpressure
AT karuzadmarin detectingsolarchameleonsthroughradiationpressure
AT semertzidisyannis detectingsolarchameleonsthroughradiationpressure
AT upadhyeianiruddha detectingsolarchameleonsthroughradiationpressure
AT zioutaskonstantinos detectingsolarchameleonsthroughradiationpressure
_version_ 1771297232521265152