Classical impurities associated to high rank algebras
Classical integrable impurities associated with high rank () algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Journal (paper) |
Γλώσσα: | English |
Έκδοση: |
2018
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10889/11480 |
Περίληψη: | Classical integrable impurities associated with high rank () algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution. |
---|