Classical impurities associated to high rank algebras

Classical integrable impurities associated with high rank () algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Δόικου, Αναστασία
Άλλοι συγγραφείς: Doikou, Anastasia
Μορφή: Journal (paper)
Γλώσσα:English
Έκδοση: 2018
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/11480
id nemertes-10889-11480
record_format dspace
spelling nemertes-10889-114802022-09-05T09:40:11Z Classical impurities associated to high rank algebras Δόικου, Αναστασία Doikou, Anastasia Non-linear Schrödinger Lax pairs Classical algebra SCOAP3 Κλασική άλγεβρα Classical integrable impurities associated with high rank () algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution. 2018-08-01T06:18:47Z 2018-08-01T06:18:47Z 2014-04 Journal (paper) Doikou, A. (2014). "Classical impurities associated to high rank algebras". Nuclear Physics B, 884, 142-156. doi:https://doi.org/10.1016/j.nuclphysb.2014.04.022 10.1016/j.nuclphysb.2014.04.022 http://hdl.handle.net/10889/11480 en application/pdf Nuclear physics B
institution UPatras
collection Nemertes
language English
topic Non-linear Schrödinger
Lax pairs
Classical algebra
SCOAP3
Κλασική άλγεβρα
spellingShingle Non-linear Schrödinger
Lax pairs
Classical algebra
SCOAP3
Κλασική άλγεβρα
Δόικου, Αναστασία
Classical impurities associated to high rank algebras
description Classical integrable impurities associated with high rank () algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution.
author2 Doikou, Anastasia
author_facet Doikou, Anastasia
Δόικου, Αναστασία
format Journal (paper)
author Δόικου, Αναστασία
author_sort Δόικου, Αναστασία
title Classical impurities associated to high rank algebras
title_short Classical impurities associated to high rank algebras
title_full Classical impurities associated to high rank algebras
title_fullStr Classical impurities associated to high rank algebras
title_full_unstemmed Classical impurities associated to high rank algebras
title_sort classical impurities associated to high rank algebras
publishDate 2018
url http://hdl.handle.net/10889/11480
work_keys_str_mv AT doikouanastasia classicalimpuritiesassociatedtohighrankalgebras
_version_ 1771297184455589888