Ανίχνευση οζιδίων του πνεύμονα στην υπολογιστική αξονική τομογραφία χαμηλής δόσης

Use of multi-detector CT in lung cancer screening has the potential to detect smaller lung nodules with improved sensitivity. In this study the development of a Computer Aided Detection (CAD) system for lung nodules is reported. A combination of two segmentation approaches is used, to segment lun...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Κορφιάτης, Παναγιώτης
Άλλοι συγγραφείς: Κωσταρίδου, Ελένη
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2008
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/1167
Περιγραφή
Περίληψη:Use of multi-detector CT in lung cancer screening has the potential to detect smaller lung nodules with improved sensitivity. In this study the development of a Computer Aided Detection (CAD) system for lung nodules is reported. A combination of two segmentation approaches is used, to segment lung regions. Following segmentation, a selective enhancement filter is applied for ''initial'' identification of nodule seed points in lung regions. Candidate lung nodule regions were delineated with the use of a region growing algorithm, with thresholds provided by minimum error thresholding. False positive regions were subsequently removed using two Support Vector Machines (SVM) classifiers in cascade, utilizing a set of 6 morphological features extracted from corresponding nodule candidate regions of the enhanced and the original images. The proposed automated scheme was tested on a reference dataset of 21 cases provided by the Lung Imaging Database Consortium. System performance on a case and slice basis provided sensitivities of 91% and 81% respectively, both with an average of 5 FPs per slice. Further analysis of the slice dataset with respect to size, contrast and location of nodules provided sensitivities of 81%, 83% and 85% for nodules of small size, low contrast and near pleura. This CAD scheme may be a useful tool in assisting radiologists in lung nodule detection.