Ανάπτυξη νέου μοντέλου ιεραρχικής συσταδοποίησης

Hierarchical clustering is one of the most powerful solutions to the problem of clustering, on the grounds that it performs a multi scale organization of the data. In recent years, research on hierarchical clustering methods has attracted considerable interest due to the demanding modern application...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Κορμπά, Αντωνία
Άλλοι συγγραφείς: Γαροφαλάκης, Ιωάννης
Μορφή: Thesis
Γλώσσα:English
Έκδοση: 2018
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/11751
Περιγραφή
Περίληψη:Hierarchical clustering is one of the most powerful solutions to the problem of clustering, on the grounds that it performs a multi scale organization of the data. In recent years, research on hierarchical clustering methods has attracted considerable interest due to the demanding modern application domains. We present a novel divisive hierarchical clustering framework called Hierarchical Stochastic Clustering (HSC), that acts in two stages. In the first stage, it finds a primary hierarchy of clustering partitions in a dataset. In the second stage, feeds a clustering algorithm with each one of the clusters of the very detailed partition, in order to settle the final result. The output is a hierarchy of clusters. Our method is based on the previous research of Meyer and Weissel \textit{Stochastic Data Clustering} and the theory of Simon and Ando on \textit{Variable Aggregation}. Our experiments show that our framework builds a meaningful hierarchy of clusters and benefits consistently the clustering algorithm that acts in the second stage, not only computationally but also in terms of cluster quality. This result suggest that HSC framework is ideal for obtaining hierarchical solutions of large volumes of data.