Περίληψη: | Η επιχείρηση, ως θεσμός, σε παγκόσμιο επίπεδο, βρίσκεται αντιμέτωπη με την οικονομική κρίση, η οποία
δυσχεραίνει τη βιωσιμότητά της. Για αυτό αποτελεί αδήριτη αναγκαιότητα η πρόβλεψη της πτώχευσής της. Τις
τελευταίες δεκαετίες έχουν διεξαχθεί μελέτες βασισμένες στην ανάπτυξη μεθόδων που θα εκτιμούν τη μελλοντική
εξέλιξη της επιχείρησης.
Σκοπός της παρούσας διπλωματικής εργασίας είναι η χρήση μεθόδων εξόρυξης δεδομένων ώστε να καταστεί
επιτυχής η πρόβλεψη της πτώχευσης ή μη μιας επιχείρησης.
Στο πρώτο μέρος της εργασίας ορίζονται οι έννοιες της εταιρικής αποτυχίας και της πτώχευσης. Ταυτόχρονα,
αναλύεται η διαδικασία πτώχευσης βάσει του Νόμου 3588/2007 του ελληνικού πτωχευτικού κώδικα.
Στο δεύτερο μέρος περιγράφεται η μέθοδος εξόρυξης δεδομένων. Παράλληλα, αναλύονται οι μέθοδοι μηχα-
νικής μάθησης που χρησιμοποιήθηκαν κατά την διαδικασία της μελέτης - Multilayer Perceptron, Decision Tree,
Random Forest, AdaBoost, Bagging-RF -. Τέλος, παρουσιάζεται η μεθοδολογία που εφαρμόστηκε σε δεδομένα,
κάνοντας χρήση του πακέτου scikit-learn της γλώσσας προγραμματισμού PYTHON.
Ως απόρροια της μεθοδολογίας που ακολουθήθηκε στην παρούσα διπλωματική εργασία, προκύπτει ότι πρα-
κτικά το μοντέλο πρόβλεψης με τη μέγιστη συνολική ακρίβεια ως προς την ορθή ταξινόμηση των στιγμιοτύπων
του συνόλου εκπαίδευσης είναι η μέθοδος Bagging με χρήση του ταξινομητή Random Forest.
|